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Abstract 

 

On January 1
st
 2019, the New Horizons spacecraft flew by the classical Kuiper belt object 

(486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object 

ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric 

function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric 

functions. Arrokoth has a geometric albedo of             
      at a wavelength of 550 nm and  

0.24 at 610 nm. Arrokoth’s geometric albedo is greater than the median but consistent with a 

distribution of cold classical Kuiper belt objects whose geometric albedos were determined by 

fitting a thermal model to radiometric observations. Thus, Arrokoth’s geometric albedo adds to 

the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal 

reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of 

Arrokoth’s surface varies with location, ranging from  0.10 – 0.40 at 610 nm with an 

approximately Gaussian distribution. Both Arrokoth’s extrema dark and extrema bright surfaces 

are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have 

similar normal reflectance distributions: both are approximately Gaussian, peak at  0.25 at 610 
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nm, and range from  0.10 – 0.40, which is consistent with co-formation and co-evolution of the 

two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle 

and location, the average hemispherical albedo at 610 nm is 0.063  0.015. The Bond albedo of 

Arrokoth at 610 nm is 0.062  0.015. 

 

1. Introduction 

 

On January 1
st
 2019, the New Horizons spacecraft approached within 3500 km of (486958) 

Arrokoth (provisionally designated 2014 MU69 and informally named Ultima Thule; Stern et al., 

2019), hereafter Arrokoth, possibly the most primitive object ever explored by a spacecraft. 

Arrokoth is a Kuiper belt object (KBO) with a semimajor axis of  44.2 au and eccentricity of  

0.04 (Porter et al., 2018) and thus the solar energy incident on its surface is weak. The 

cumulative impacts on its surface over Solar System history were predicted to be relatively low 

in both abundance and speed, such that the primordial surface may not be saturated by craters 

(Greenstreet et al., 2019), consistent with New Horizons’ observation of a low crater density 

(Stern et al., 2019; Spencer et al., accepted; Singer et al., 2019). The volume-equivalent spherical 

diameter of Arrokoth is  18 km, so internal heating from accretion and radionuclides is 

expected to be weak (Stern et al., 2019; Spencer et al., accepted). Thus, the surface has most 

likely experienced relatively little modification from solar energy, impacts, and internal energy 

and is likely more pristine than other objects explored by spacecraft. However, the primordial 

surface of Arrokoth has experienced space weathering (Pieters and Noble, 2016) since the epoch 

of its formation. 

 

The Kuiper belt has several dynamical sub-populations (Petit et al., 2011) and based on its orbit, 

Arrokoth is likely a cold classical Kuiper belt object (CCKBO) and a member of the kernel 

(Porter et al., 2018), the sub-population that has experienced the least dynamical perturbations 

and likely formed at its current location. Arrokoth is therefore also dynamically primitive.  

 

Ground-based observations suggested (Buie et al., submitted) and New Horizons confirmed 

Arrokoth to be a bilobate object (Stern et al., 2019). The connection zone between the two lobes 

is brighter than its surroundings and is referred to as the neck (Stern et al., 2019). Arrokoth has 
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an obliquity of  99
o
 and as a result, most of the northern hemisphere of Arrokoth was not 

illuminated and imaged by New Horizons (Spencer et al., accepted). The smaller lobe is 

dominated by an  7 km diameter impact crater that is almost an order of magnitude larger than 

the next largest crater observed on Arrokoth; it is informally referred to as Maryland (Spencer et 

al., accepted; Singer et al., 2019). Arrokoth has a nearly uniform red color at visible wavelengths 

that is consistent with other CCKBOs (Benecchi et al., 2019b; Grundy et al., accepted). The 

surface is composed of organic macromolecules (similar to tholins produced in terrestrial 

laboratories), amorphous carbon, and methanol; surprisingly, water-ice absorption bands are 

weak or not present in the reflectance spectrum (Grundy et al., accepted). No satellites or rings 

orbiting Arrokoth were discovered (Stern et al., 2019; Spencer et al., accepted). 

 

We determine the normal reflectance, geometric albedo, hemispherical albedo, and Bond albedo 

of Arrokoth’s surface. Most variations of the observed brightness of a surface are not intrinsic, 

but rather due to variation of the observation geometry, which is defined by the incident, 

emission, and solar phase angles (photometric angles; e.g., Hofgartner et al., 2018). Normal 

reflectance is the I/F (where I is the scattered intensity from the surface and F is the solar flux at 

the distance of the scattering surface; also called the radiance factor (e.g., Hapke, 2012)) when 

these three photometric angles are zero degrees; it is a measure of the intrinsic brightness of a 

surface. Geometric albedo is the disk-integrated I/F (note that since Arrokoth is not spherical, its 

projected shape is not a disk; we use the term disk-integrated in the generalized sense of 

integration over the projected area) at a solar phase angle of zero degrees (opposition). 

Geometric albedo is a disk-integrated quantity whereas normal reflectance is an analogous 

spatially-resolved quantity. Hemispherical albedo is the ratio of the total power scattered by a 

surface to the incident power and is crucial for understanding the thermal evolution of the 

surface. Bond albedo is the analogous disk-integrated albedo; it is the ratio of the total power 

scattered by a planetary body to the incident power. Note that for both the hemispherical albedo 

and Bond albedo, total power refers to the total in an angular sense (i.e., integration over all 

emission angles); bolometric hemispherical albedo and bolometric Bond albedo are the ratios for 

the total power in both angular and spectral senses (i.e., integration over all emission angles and 

all wavelengths). All of these albedos provide clues about the properties of a surface and its 

geology. We present maps of the normal reflectance and hemispherical albedo of Arrokoth. We 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

analyze the normal reflectance distribution over Arrokoth’s surface and compare our results for 

Arrokoth to other KBOs as well as Centaurs, comets, and irregular satellites, all or some of 

which may be former KBOs. 

 

In section 2, the photometric function we use to correct for brightness variations due to changes 

of the photometric angles is described. A map of the normal reflectance of Arrokoth is presented 

in section 3 and its geometric albedo is determined. Section 4 discusses the hemispherical and 

Bond albedos of Arrokoth. The photometry of Arrokoth is compared to cognate Solar System 

objects in section 5. The conclusions are provided in the final section. 

 

2. Photometric Function 

 

Various photometric functions describe the brightness of planetary surfaces as a function of the 

photometric angles (incidence, emission, and solar phase; e.g., Hapke, 2012). For New Horizons’ 

observations of Arrokoth, we use a linear combination of Lommel-Seeliger (also known as lunar) 

and Lambert photometric functions and refer to the combined function as the lunar-Lambert 

function. The Lommel-Seeliger function is an analytic solution to the equations of radiative 

transfer when multiple scattering is ignored. The Lambert function describes perfectly diffuse 

scattering and is a good approximation when the surface reflectance is dominated by multiple 

scattering. The empirical lunar-Lambert function has been used to study several planetary 

surfaces, particularly in the outer Solar System (e.g., Buratti and Veverka, 1983; Buratti et al., 

2017), and is appropriate for a limited dataset because it has few parameters.  

 

The equation we use for the lunar-Lambert photometric function is: 

 

 
 

 
  

 ( )     

         
 (   )      (1) 

 

where   is the scattered intensity from the surface of Arrokoth,  is the solar flux at Arrokoth 

divided by pi, the first term on the right side of the equation is the Lommel-Seeliger (lunar, 

single scattering) photometric function and the second term is the Lambert (diffuse, multiple 
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scattering) function. The photometric angles are      and  , where   is incidence angle (angle at 

the surface between the direction to the Sun and the surface normal),   is emission angle (angle 

at the surface between the direction to the camera and the surface normal) and  is solar phase 

angle (Sun-surface-camera angle).    is an empirical parameter that depends on the relative 

contributions of the lunar and Lambert functions and the magnitude of the normal reflectance 

and  ( ) is the surface phase function, which depends on physical properties such as surface 

roughness and compaction. We note that   is not the partition between the lunar and Lambert 

functions, because it also incorporates the total magnitude of the surface brightness (for example, 

      does not imply that the lunar and Lambertian terms contribute equally to the I/F; 

McEwen, 1986). The lunar-Lambert function can be expressed in slightly different forms than 

equation 1 (e.g., McEwen, 1986). For example,   could be allowed to depend on solar phase 

angle; however, in that case the second term is no longer the Lambertian function for diffuse 

scattering that is well known in planetary photometry, so we treat   as a constant. Equation 1 is 

valid for 0
o 
≤   ≤ 90

o
 and 0

o 
≤   ≤ 90

o
, otherwise     = 0. 

 

To determine the photometric angles at each location on the surface, the surface shape must be 

known. The shape can often be approximated as a sphere, but that approximation is inadequate 

for Arrokoth’s complex shape; two-spheres is also insufficient. To determine the photometric 

angles at each location on the surface of Arrokoth, we used a merged shape model (Spencer et 

al., accepted) that combines a global, low-resolution shape model (Porter et al., 2019), and a 

stereo topographic model of the ventral surface of Arrokoth (Beyer et al., 2019). This merged 

model was created by fitting the stereo model to the shape model, and then eroding both models 

back from their intersection, joining them with polygons, and then locally smoothing the model 

at the join (Beyer et al., 2019). 

 

The New Horizons spacecraft approached Arrokoth from a solar phase angle asymptote of  

11.8
o
. New Horizons’ narrow angle camera, the Long Range Reconnaissance Imager (LORRI; 

Cheng et al., 2008), acquired many images at this solar phase angle with increasingly better 

resolution as the spacecraft neared Arrokoth. In this analysis, we use the best resolution LORRI 

images at    11.8
o 

and all subsequent LORRI images that detected Arrokoth, except a crescent 

image at    150
o
 because the available merged shape model did not adequately fit the observed 
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crescent to reliably predict the incidence and emission angles. This corresponds to five image 

sequences referred to as CA01, CA02, CA04, CA05, and CA06; the solar phase angle and 

LORRI pixel scale for these image sequences are provided in Table 1 (additional observational 

details are provided in the supplementary material of Spencer et al., accepted). Each of these 

image sequences corresponds to a series of images acquired in rapid succession. The images in 

each series were pipeline processed as described in Weaver et al., submitted, then deconvolved 

and stacked using the techniques described in Weaver et al., 2016, then the mode of the sky 

background was subtracted from the whole image. We analyze the resulting stacked, 

background-subtracted images. 

 

Table 1: Stacked New Horizons LORRI images that are analyzed, their solar phase angles and 

pixel scales, and best-fit surface phase function ( ( )) for the lunar-Lambert photometric 

function. 

Stacked 

Images 

Solar Phase 

Angle (degrees) 

Pixel Scale 

(m/pixel) 

Best-fit surface phase function 

for lunar-Lambert photometric function 

CA01 11.8 300  (11.8
o
) = 0.109 

CA02 12.0 212  (12.0
o
) = 0.111 

CA04 13.0 137  (13.0
o
) = 0.105 

CA05 15.7 83  (15.7
o
) = 0.098 

CA06 32.6 33  (32.6
o
) = 0.057 

 

Figure 1A shows the measured I/F of Arrokoth in all five images as a function of the photometric 

angles. Each image corresponds to a plane with an approximately constant solar phase angle. 

Figure 1B shows the measurements for only the CA06 image. Systematic variations with each 

photometric angle are observed in both panels. The parameters of the best-fit lunar-Lambert 

function to all of the data in figure 1A are   = 0.970,  (11.8
o
) = 0.109,  (12.0

o
) = 0.111,  (13.0

o
) 

= 0.105,  (15.7
o
) = 0.098,  (32.6

o
) = 0.057. This global fit to the full dataset implicitly assumes 

that the photometric behavior is the same for all locations on the surface. Figures 1C and 1D 

show the residuals after subtracting the best-fit lunar-Lambert function. The trends with the 

photometric angles are no longer present, indicating that the best-fit photometric function 

adequately describes the photometric behavior of Arrokoth. Variations within the residual values 
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of each image correspond primarily to intrinsic brightness differences between different 

locations but also errors of the photometric angles (from an imperfect shape model (Porter et al., 

2019; Beyer et al., 2019)) and noise in the measured I/F.  

 

 

 

Figure 1: A. I/F (radiance factor) of (486958) Arrokoth’s surface as a function of the photometric 

angles. Each plane with approximately constant solar phase angle corresponds to one of the five 

images. Each I/F measurement (dot) corresponds to a pixel that includes Arrokoth’s surface. 

Systematic trends of the I/F with each photometric angle are observed. B. I/F as a function of 

incidence and emission angles for the CA06 image. The heterogenous sampling of the emission 

angle and incidence angle phase space is due to Arrokoth’s irregular shape and topography. 

Approximately 0.3% of the I/F values in both A. and B. are < 0; this is a result of noise and 

pipeline processing of the images. C. Residuals after the best-fit lunar-Lambert function is 

subtracted from the data in panel A. The systematic trends with the photometric angles are no 
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longer apparent, indicating that the photometric function accounts for the effect of the 

photometric angles on surface brightness. The remaining variability in the residuals is primarily 

due to intrinsic brightness differences between different locations. D. Residuals after the best-fit 

photometric function is subtracted from the data in panel B. 

 

3. Normal Reflectance and Geometric Albedo of (486958) Arrokoth 

 

Normal reflectance is the I/F when the incidence, emission, and solar phase angles are zero 

degrees and is a measure of the intrinsic brightness of a surface. The normal reflectance of each 

location on Arrokoth’s surface can be determined using the best-fit lunar-Lambert photometric 

function: 

 

      (
 

 
(     ))

 
(

 
 ( )
  (   )

 
 ( )     
          

(   )     
) (2) 

 

where      is the normal reflectance of (pixel) location j. The above equation assumes that the 

ratio of the normal reflectance to the observed I/F at photometric angles       is the same for all 

locations on the surface, consistent with the earlier assumption that a single photometric function 

is applicable at all locations. ( (     )  )  is the measured I/F at (pixel) location j in the image, 

  and  ( ) are determined by the best-fit function. The parameter  ( ), however, is not 

constrained by the images since New Horizons’ did not image Arrokoth at  < 11.8
o
. This is a 

common limitation of spacecraft data, especially for flyby missions, and one solution is to use 

Earth-based observations at   0
o
.  

 

The opposition ( = 0
o
) magnitude from Earth-based observations can be expressed as a disk-

integrated I/F; the disk-integrated I/F at opposition is called the geometric albedo. The equation 

for determining the geometric albedo is: 

 

        (      )
    

 

 
 (3) 
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where   is the geometric albedo,      is the apparent magnitude of the Sun,   is the absolute 

magnitude of Arrokoth,     is the distance of one astronomical unit, and   is the projected area 

of Arrokoth. The observed geometric albedo can then be equated to the expected geometric 

albedo for the lunar-Lambert photometric function to determine  ( ). For a sphere, the expected 

geometric albedo is an analytic expression (e.g., Buratti and Veverka, 1983). For a complex 

shape such as that of Arrokoth, however, the geometric albedo for a lunar-Lambert photometric 

function is not a simple analytic expression. Using the merged shape model for Arrokoth, the 

best-fit lunar-Lambert function, and assuming a value for  ( ), we simulate the geometric 

albedo. We repeat the simulation for a range of  ( ) and fit the predicted geometric albedo to 

the observed geometric albedo from Earth-based observations, effectively fitting for  ( ). 

 

The absolute magnitude of Arrokoth was determined using the Hubble Space Telescope F350LP 

filter (Benecchi et al., 2019a) and we calculate that the weighted mean of all the reported 

measurements is         = 10.47. Using the observed color of Arrokoth (Benecchi et al., 2019b) 

this corresponds to a Johnson V-band absolute magnitude in the Vega-magnitude system of    = 

10.40. The apparent solar magnitude in this system is -26.76 (Willmer, 2018). The rotationally 

averaged projected area, to the Sun, in the middle of 2016 (approximate midpoint of the Earth-

based observations to measure Arrokoth’s absolute magnitude (Benecchi et al., 2019a)) of 

Arrokoth was 4.57   10
8 

m
2
. Based on these values and the above equation, we calculate that the 

geometric albedo of Arrokoth in the V-band (pivot wavelength of 551.1 nm) is  0.21. The 

uncertainty of the geometric albedo is dominated by the uncertainty of the absolute magnitude of 

Arrokoth. To estimate the uncertainty, we use the standard deviation of the Hubble Space 

Telescope measurements, which gives             
     . Note that the geometric albedo does not 

depend linearly on the absolute magnitude ( ), so the uncertainty does not simply double and 

triple for two standard deviations (2-sigma) and three standard deviations (3-sigma). Also, the 

statistical uncertainty of the weighted mean of the absolute magnitude is < 1/20
th 

the standard 

deviation of the measurements; however, we consider the larger uncertainty stated above to be a 

better estimate due to possible systematic errors. 
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This V-band geometric albedo of          
      is greater than that reported for Arrokoth in Stern et 

al., 2019 (0.165  0.01), but consistent within the uncertainties, because that work used an 

absolute magnitude of         = 10.86; 10.47 is the most-current measurement (Benecchi et al., 

2019a). Note that the absolute values of the geometric albedo and normal reflectances that we 

report in this work depend strongly on the V-band absolute magnitude, which was not measured 

by New Horizons. If the measured value of the absolute magnitude changes, the values of the 

geometric albedo and normal reflectances will change accordingly. We do not expect the visible 

absolute magnitude to differ substantially from the color-adjusted, weighted mean we calculated 

above, from the measurements in Benecchi et al., 2019a; 2019b, but are explicitly 

acknowledging this sensitivity. The relative variations of the normal reflectance of Arrokoth’s 

surface in the normal reflectance map, however, are not affected by the absolute magnitude. 

 

Using the measured color slope of Arrokoth (Grundy et al., accepted), we determined the 

geometric albedo at the LORRI pivot wavelength (607.6 nm; Cheng et al., 2008) to be  0.24. 

We simulated the geometric albedo of Arrokoth in the middle of 2016 (using its geometry 

relative to the Sun and a hypothetical observer at  = 0
o
). We repeated the simulation for 12 

different subsolar longitudes to account for rotational variability and then averaged the results. 

The Arrokoth geometric albedo of 0.24 is best-fit by the simulations with  ( ) = 0.456.  

 

Figure 2 shows the normal reflectance map of Arrokoth. Since Arrokoth is a complex shape and 

most of the northern hemisphere was not imaged (a result of Arrokoth’s high obliquity and New 

Horizons’ approach from the inner Solar System), the map is not projected but displayed with the 

same geometry as the CA06 image. The map for the CA01 image geometry is also included to 

show some regions of the surface that were imaged by New Horizons but are not apparent in the 

CA06 geometry, albeit at lower spatial resolution (Table 1). The normal reflectance varies across 

the surface of Arrokoth. The darkest region is in the Maryland crater on the smaller lobe and has 

a normal reflectance of  0.10. A depression on the larger lobe, near the neck, on the left side of 

the CA06 image in figure 2 (this area is informally referred to as Louisiana), has similarly low 

normal reflectance. The brightest normal reflectance of Arrokoth is  0.45 and occurs at the 

neck, two bright spots in the Maryland crater, and two small spots on the larger lobe near the 

neck and on the right side of the CA06 image in figure 2. 
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Figure 2: Normal reflectance map of (486958) Arrokoth at New Horizons LORRI pivot 

wavelength of 607.6 nm. The left panel is the CA06 image, the highest-resolution image from 

the New Horizons flyby, corrected to normal reflectance using the lunar-Lambert photometric 

function. The normal reflectance map for the CA01 image is also included in the right panel for 

the sake of completeness, since it includes some areas not visible in the CA06 image. The color 

scale bar applies to both images. The regions that are informally referred to as Maryland and 

Louisiana are indicated in the figure. Anomalously bright edges at the outline of Arrokoth are 

artifacts. 

 

The brightest regions of Arrokoth are correlated to depressions, suggesting that the topography 

influences the albedo and/or vice versa. A possible explanation is that volatiles have accumulated 

in the depressions, but we consider this explanation unlikely since the normal reflectances are 

not as high as that of known volatile-rich surfaces in the Kuiper belt (e.g., Buratti et al., 2017; 

Hofgartner et al., 2019) and the surface temperatures of these regions should differ from their 

surroundings by only a few Kelvin (Grundy et al., accepted). Another possible explanation is that 

topographic shielding of energetic radiation that would chemically modify the surface toward 
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dark-red material (similar to tholins produced in terrestrial laboratories) inhibits this processing 

in depressions. If true, it is surprising that these surfaces are not as processed as their 

surroundings, given that they likely also date from the epoch of formation. The hypothesis that 

we favor is accumulation of fine grains in the depressions, possibly from transport across the 

surface. A more detailed investigation of these hypotheses is warranted but left to future work. 

The correlation between high normal reflectance and low topography also suggests that the neck 

connecting the two lobes of Arrokoth may not be anomalous but only the largest example of 

Arrokoth’s bright depressions; the neck may not be bright due to a process that operated (or 

operates) solely on the neck. Intriguingly, the darkest observed regions on both lobes are also in 

depressions, the largest observed depression on each lobe. 

 

Figure 3A shows the normal reflectance distribution of Arrokoth’s surface. The distribution is 

unimodal with a mode at  0.25 (recall that this is at the LORRI pivot wavelength of 607.6 nm) 

and approximately symmetric and Gaussian. The approximately Gaussian distribution of 

Arrokoth’s normal reflectance indicates that the geometric albedo is unlikely to be substantially 

skewed because of any particular terrain type, such as the bright neck connecting the two lobes. 

The normal reflectance distributions of the individual lobes are also included in figure 3A. The 

distributions of the lobes are similar to that of the whole of Arrokoth, they are approximately 

symmetric and Gaussian, and peak at  0.25. The best-fit normalized Gaussian distributions are 

shown in figure 3B; only normal reflectances from 0.15-0.35 were included in the fits to avoid 

broadening of the distributions by values at the wings (outside of this range). The best-fit mean 

and standard deviation for Arrokoth’s surface are 0.249 and 0.036, 0.251 and 0.034 for the larger 

lobe, and 0.244 and 0.040 for the smaller lobe. The distribution of the smaller lobe is broader and 

skewed to lower normal reflectance. These differences, however, are not apparent when the large 

Maryland crater is not included in the histogram for the smaller lobe, as shown in figure 3C. 

Thus, the two lobes have very similar distributions, but the smaller lobe’s distribution is slightly 

different due to its large crater. 
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A. 

B. 

C. 
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Figure 3: A. Normal reflectance distributions of (486958) Arrokoth and its two lobes at the New 

Horizons LORRI pivot wavelength of 607.6 nm. The distributions are similar, all three are 

unimodal with a peak at  0.25 and approximately symmetric and Gaussian. B. Best-fit Gaussian 

distributions on top of distributions in A. C. Normal reflectance distribution of the smaller lobe 

without its large depression (informally called Maryland or MD). The distributions of the two 

lobes are even more similar when Maryland is neglected. 

 

4. Hemispherical Albedo and Bond Albedo of (486958) Arrokoth 

 

Hemispherical albedo is the ratio of the total power scattered by a surface to the incident power 

(recall that hemispherical albedo is wavelength specific and bolometric hemispherical albedo is 

the wavelength-integrated ratio) and is crucial for understanding the thermal evolution of the 

surface. The lunar-Lambert photometric function describes the scattered radiation for all 

geometries and the total power scattered can be determined by integrating the function over the 

emission hemisphere. The equation for the hemispherical albedo is: 

 

  ( )   
∫ ∫  (   )             

  

 

 
 
 

      
 

(4) 

 

and upon substituting the lunar-Lambert photometric function (equation 1) for  (   )   and 

simplifying: 

 

  ( )  
 

 
∫ ∫

 ( )         

          
    

  

 

 
 

 

 (   ) (5) 

 

where  ( ) is the hemispherical albedo,   and   are the spherical polar angles (  is the same as 

the emission angle, e), and the other variables are consistent with the definitions in previous 

sections ( (   ) is scattered intensity,   is solar flux divided by pi,   is incidence angle,   is 

solar phase angle,   and  ( ) are parameters of the lunar-Lambert function). The solar phase 

angle can be expressed in terms of the other angles using the spherical law of cosines: 
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                              (6) 

 

Note that the above equations indicate that the hemispherical albedo of a general surface depends 

on the incidence angle of the incident power. This is not a new finding but is an interesting 

aspect of hemispherical albedo that has been empirically confirmed and is frequently forgotten 

and/or neglected (Squyres and Veverka, 1981).  

 

The hemispherical albedo of the Lambertian component of the photometric function is analytic 

and equal to the normal reflectance of the Lambertian component,    , independent of 

incidence angle. To evaluate the integral for the lunar (Lommel-Seeliger) component, a 

functional form for  ( ) is needed. A variety of functions have been proposed for  ( ), with 

varying degrees of complexity and success (e.g., Hapke, 2012). A three-parameter exponential 

function of the form: 

 

  ( )     
   

  
 (7) 

 

gives a good fit to our  ( ) values (including  ( )) for Arrokoth with   = 0.46,    = -0.57, and 

   = 0.37. We numerically integrated the lunar component of the hemispherical albedo with this 

function. 

 

The left panel of figure 4 shows the hemispherical albedo of Arrokoth as a function of incidence 

angle. The hemispherical albedo at the LORRI pivot wavelength of 607.6 nm monotonically 

increases from 0.059 at an incidence angle of 0
o
 to a limit 0.086 at 90

o 
(the equation for the 

hemispherical albedo is not defined at   = 90
o
 but the limit exists). This is a nearly 50% increase 

in the hemispherical albedo over the full range of incidence angles and demonstrates that the 

variation of hemispherical albedo with incidence angle can be substantial. Note that the 

hemispherical albedo dependence on incidence angle is not always monotonic, depending on the 

functional form of  ( ). The mean hemispherical albedo of Arrokoth, at 607.6 nm, is 0.063  

0.015 and the incidence angle cosine expected value ( ( )     ) is 0.061  0.015. The 

uncertainty is an estimate, represents approximately 2-sigma or 68% confidence, and is 
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dominated by the uncertainty of  ( ); the formal uncertainty from propagating the uncertainty of 

the geometric albedo is an order of magnitude smaller. The right panel of figure 4 shows a mean 

(incidence angle average) hemispherical albedo map of Arrokoth. The map was produced 

assuming that all locations on the surface of Arrokoth have the same photometric behavior 

(dependence on incidence, emission, and solar phase angles) but differ in their normal 

reflectance, consistent with earlier assumptions to determine the best-fit photometric function 

and normal reflectance map. The hemispherical albedo and normal reflectance maps differ only 

in their absolute values by the ratio of the mean hemispherical albedo to the mean normal 

reflectance; the map in figure 4 was produced by multiplying the CA06 map in figure 2 by the 

ratio of the mean hemispherical albedo to the mean normal reflectance. 

 

 

 

Figure 4: Hemispherical albedo of (486958) Arrokoth at New Horizons LORRI pivot wavelength 

of 607.6 nm. The left panel shows the hemispherical albedo as a function of incidence angle; the 

variation with incidence angle is significant. The mean hemispherical albedo is 0.063  0.015. 

The right panel is a map of the mean (incidence angle average) hemispherical albedo. The mean 

hemispherical albedo map differs from the normal reflectance map in figure 2 only by a 

multiplicative factor. 

 

Bond albedo is another common photometric parameter in planetary science. It is the ratio of the 

total power scattered by a planetary body to the incident power; it is different from hemispherical 
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albedo in that it is disk-integrated. Bond albedo can be generalized to a non-spherical shape, but 

in practice a spherical shape is assumed. Bond albedo does not depend on incidence angle. The 

Bond albedo of the Lambertian component of the lunar-Lambert photometric function is    . 

We numerically integrated the lunar component of the spherical Bond albedo (Buratti and 

Veverka, 1983), using the same exponential function for  ( ) as above. The Bond albedo for the 

combined lunar-Lambert photometric function of Arrokoth is 0.062  0.015 at 607.6 nm. The 

Bond albedo of Arrokoth is very similar to its mean hemispherical albedo, but these parameters 

could differ for some shapes and photometric functions. Note that the visible disk-integrated 

(assuming a spherical shape) solar phase curve of Arrokoth is presented and analyzed in Stern et 

al., 2019. 

 

5. Comparison with Albedos of Cognate Solar System Objects 

 

Based on its orbital parameters, Arrokoth is likely a cold classical Kuiper belt object (CCKBO; 

Porter et al., 2018). The orbital parameter phase space of the hot classical KBO (HCKBO) 

population, however, overlaps with that of the CCKBO population and based on orbital 

characteristics alone, there is a chance that Arrokoth is a HCKBO (Petit et al., 2011). The 

albedos of most known KBOs are not strongly constrained, but the geometric albedos of 8 

CCKBOs and 25 HCKBOs were determined by fitting a thermal model to radiometric 

observations (Vilenius et al., 2014; Lacerda et al., 2014). Arrokoth was not included in that 

sample and the KBOs in that sample were approximately an order of magnitude larger in 

diameter than Arrokoth. The median V-band geometric albedo of these CCKBOs is 0.15 with a 

68% confidence interval of 0.09-0.23 and of the HCKBOs is 0.08 with a 68% confidence interval 

of 0.04-0.13 (Lacerda et al., 2014). The Arrokoth V-band (pivot wavelength of 551.1 nm) 

geometric albedo of  0.21 is consistent with the CCKBO distribution; it is greater than the 

median but in the 68% confidence interval. Arrokoth’s geometric albedo is less consistent with 

the HCKBO distribution. Thus, the geometric albedo of Arrokoth adds to the orbital (Porter et 

al., 2018) and color (Grundy et al., accepted) evidence that Arrokoth is a CCKBO. 

 

Aside from Arrokoth, the only KBOs to be explored by a spacecraft are Pluto and its satellites. 

Pluto’s geometric albedo varies significantly with sub-observer latitude and longitude due to 
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extreme variations of the normal reflectance of its surface; the mean geometric albedo at the 

LORRI pivot wavelength is 0.62 (Buratti et al., 2017). Charon’s geometric albedo at the LORRI 

pivot wavelength is 0.41 (Buratti et al., 2017) whereas Arrokoth’s is  0.24. Pluto and Charon 

have much greater geometric albedos than Arrokoth, as well as other KBOs in general. Pluto and 

other large KBOs such as Eris and Makemake have characteristically high geometric albedos due 

to the retention of volatiles on their surface (e.g., Schaller and Brown, 2007). Charon has not 

retained its surface volatiles, but it is also larger than most KBOs and its surface is geologically 

evolved (Moore et al., 2016) so it’s unsurprising that the geometric albedos of both Pluto and 

Charon differ from that of Arrokoth. The Pluto system’s smaller satellites have geometric 

albedos from 0.56-0.83 (Weaver et al., 2016). These satellites are more similar in size to 

Arrokoth, but likely formed as the result of a giant impact (e.g., McKinnon et al., 2017), which 

resulted in a different composition and history than Arrokoth and most other KBOs. Thus, 

Arrokoth’s geometric albedo is different from all of the bodies in the Pluto system. 

 

Arrokoth’s normal reflectance, however, is similar to specific dark regions on Pluto and Charon. 

Pluto has at least two distinct dark terrains: (1) the darkest (and reddest) terrain at the equator 

including Cthulhu (informal name) and (2) a terrain that is also relatively dark but distinct from 

the equatorial dark regions in its normal reflectance distribution (it is also less red) in Viking 

Terra (Buratti et al., 2017; Olkin et al., 2017). The normal reflectance of the latter is similar to 

Arrokoth. Mordor Macula (informal name) at Charon’s north pole is its darkest observed terrain 

and has a mean normal reflectance similar to Arrokoth. The dark, red materials of Viking Terra 

and Mordor Macula are thought to be organic macromolecules produced by energetic radiation 

processing of hydrocarbons (tholins; Grundy et al., 2016a; 2016b). The similar normal 

reflectance of these surfaces could be a result of similar initial compositions and radiolytic 

evolution within the Kuiper belt. 

 

Saturn’s satellite Phoebe and other irregular satellites of the giant planets are hypothesized to be 

captured and possibly former KBOs (e.g., Johnson and Lunine, 2005). The V-band geometric 

albedo of Phoebe is 0.09 (Miller et al., 2011) and the irregular satellites generally have geometric 

albedos  0.10 (e.g., Grav et al., 2015; Triton is an exception because it is large enough to retain 

its volatiles). Centaurs and Jupiter family comets are also hypothesized to be former KBOs that 
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have been scattered out of the Kuiper belt. Centaurs are bimodal in color and albedo (e.g., Bauer 

et al., 2013): the darker/grayer and brighter/redder groups have mean visible geometric albedos 

(determined by fitting thermal models to radiometric observations) of 0.06  0.02 and 0.12  

0.05, where the uncertainties indicate one standard deviation. One Centaur, (145486) 2005 

UJ438, has a modeled visible geometric albedo of > 0.20 in both WISE/NEOWISE-based (Bauer 

et al., 2013) and Herschel-based (Duffard et al., 2014) analyses. But, both analyses also report 

large uncertainties for this Centaur. Two other Centaurs have modeled visible geometric albedos 

> 0.18 in WISE/NEOWISE-based analysis (Bauer et al., 2013), but substantially lower values in 

Herschel-based analysis (Duffard et al., 2014). The median modeled geometric albedo of a 

sample of 24 Jupiter family comets is 0.042 with a standard deviation of 0.013 (Kokotanekova et 

al., 2017). 67P/Churyumov–Gerasimenko, the best explored Jupiter family comet, has a 

geometric albedo of 0.062 at 550 nm (Ciarniello et al., 2015). Thus, the irregular satellites, 

darker and grayer group Centaurs, and Jupiter family comets are significantly darker than 

CCKBOs and this is also true for the best explored objects in each family: Phoebe, 

67P/Churyumov–Gerasimenko, and Arrokoth (Centaurs have not yet been explored with 

spacecraft). This result suggests that they originate from a different population and/or were 

darkened after their departure from the Kuiper belt. 

 

6. Conclusions 

 

Kuiper belt object (486958) Arrokoth has a geometric albedo of             
      at a wavelength 

of 550 nm and  0.24 at 610 nm. Its geometric albedo is greater than the median of, but 

consistent with, a distribution of cold classical KBOs, and is less consistent with the hot classical 

KBO distribution, which adds to the orbital (Porter et al., 2018) and color (Grundy et al., 

accepted) evidence that Arrokoth is a cold classical KBO. Thus, Arrokoth may be the most 

primitive object explored by a spacecraft. 

 

The normal reflectance of Arrokoth’s surface varies with location, ranging from  0.10 – 0.40 at 

a pivot wavelength of 610 nm with an approximately Gaussian distribution. The normal 

reflectance distributions of Arrokoth’s two lobes are similar, both are approximately Gaussian, 
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peak at  0.25 at 610 nm, and range from  0.10 – 0.40. The photometric similarity of the two 

lobes is consistent with co-formation and co-evolution. 

 

The hemispherical albedo of Arrokoth varies substantially with both incidence angle and 

location, the average is 0.063  0.015 at 610 nm. The Bond albedo of Arrokoth is 0.062  0.015 

at 610 nm. 

 

Acknowledgements: We are sincerely grateful to the entire New Horizons team for enabling this 

research. We thank the NASA New Horizons project for financial support. J.D.H. gratefully 

acknowledges financial support from the NASA Postdoctoral Program. This research was carried 

out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the 

National Aeronautics and Space Administration. We thank Stefano Mottola, an anonymous 

referee, and editor Will Grundy for their service and helpful comments. 

 

References 

 

Bauer, J. M., Grav, T., Blauvelt, E., Mainzer, A. K., Masiero, J. R., Stevenson, R., Kramer, E., 

Fernandez, Y. R., Lisse, C. M., Cutri, R. M., Weissman, P. R., Dailey, J. W., Masci, F. J., 

Walker, R., Waszczak, A., Nugent, C. R., Meech, K. J., Lucas, A., Pearman, G., Wilkins, A., 

Watkins, J., Kulkarni, S., Wright, E. L., WISE Team, PTF Team, Aug 2013. Centaurs and 

Scattered Disk Objects in the Thermal Infrared: Analysis of WISE/NEOWISE Observations. 

The Astrophysical Journal 773 (1), 22. 

 

Benecchi, S. D., Porter, S., Buie, M. W., Zangari, A. M., Verbiscer, A. J., Noll, K. S., Stern, S. 

A., Spencer, J. R., Parker, A., Dec 2019a. The HST Lightcurve of (486958) 2014 MU69. Icarus 

334, 11-21. 

 

Benecchi, S. D., Borncamp, D., Parker, A., Buie, M., Noll, K., Binzel, R., Stern, S. A., 

Verbiscer, A., Kavelaars, J. J., Zangari, A., Spencer, J. & Weaver, H., Dec 2019b. The Color and 

Binarity of (486958) 2014 MU69 and Other Long-Range New Horizons Kuiper Belt Targets. 

Icarus 334, 22-29. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

Beyer, R., Porter, S., Schenk, P., Spencer, J., Beddingfield, C., Grundy, W., Keane, J., Lauer, T., 

Moore, J., Olkin, C., Parker, J., Stern, A., Umurhan, O., Verbiscer, A., Weaver, H., New 

Horizons Science Team, 2019. Stereo Topography of KBO (486958) 2014 MU69. In: 

AAS/Division for Planetary Sciences Meeting Abstracts #51. AAS/Division for Planetary 

Sciences Meeting Abstracts. 

 

Buie, M., W., et al., submitted. Size and shape constraints of (486958) Arrokoth from stellar 

occultations. The Astronomical Journal. 

 

Buratti, B., Veverka, J., Jul 1983. Voyager photometry of Europa. Icarus 55 (1), 93-110. 

 

Buratti, B. J., Hofgartner, J. D., Hicks, M. D., Weaver, H. A., Stern, S. A., Momary, T., Mosher, 

J. A., Beyer, R. A., Verbiscer, A. J., Zangari, A. M., Young, L. A., Lisse, C. M., Singer, K., 

Cheng, A., Grundy, W., Ennico, K., Olkin, C. B., May 2017. Global albedos of Pluto and Charon 

from LORRI New Horizons observations. Icarus 287, 207-217. 

 

Cheng, A. F., Weaver, H. A., Conard, S. J., Morgan, M. F., Barnouin-Jha, O., Boldt, J. D., 

Cooper, K. A., Darlington, E. H., Grey, M. P., Hayes, J. R., Kosakowski, K. E., Magee, T., 

Rossano, E., Sampath, D., Schlemm, C., Taylor, H. W., Oct 2008. Long-Range Reconnaissance 

Imager on New Horizons. Space Science Reviews 140 (1-4), 189-215. 

 

Ciarniello, M., Capaccioni, F., Filacchione, G., Raponi, A., Tosi, F., De Sanctis, M. C., Capria, 

M. T., Erard, S., Bockelee-Morvan, D., Leyrat, C., Arnold, G., Barucci, A., Beck, P., Bellucci, 

G., Fornasier, S., Longobardo, A., Mottola, S., Palomba, E., Quirico, E., Schmitt, B., Nov 2015. 

Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard 

Rosetta. Astronomy and Astrophysics 583, A31. 

 

Duffard, R., Pinilla-Alonso, N., Santos-Sanz, P., Vilenius, E., Ortiz, J. L., Mueller, T., Fornasier, 

S., Lellouch, E., Mommert, M., Pal, A., Kiss, C., Mueller, M., Stansberry, J., Delsanti, A., 

Peixinho, N., Trilling, D., Apr 2014. “TNOs are Cool”: A survey of the trans-Neptunian region. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

XI. A Herschel-PACS view of 16 Centaurs. Astronomy and Astrophysics 564, A92. 

 

Grav, T., Bauer, J. M., Mainzer, A. K., Masiero, J. R., Nugent, C. R., Cutri, R. M., Sonnett, S., 

Kramer, E., Aug 2015. NEOWISE: Observations of the Irregular Satellites of Jupiter and Saturn. 

The Astrophysical Journal 809 (1), 3. 

 

Greenstreet, S., Gladman, B., McKinnon, W. B., Kavelaars, J. J., Singer, K. N., Feb 2019. Crater 

Density Predictions for New Horizons Flyby Target 2014 MU69. The Astrophysical Journal 

Letters 872 (1), L5. 

 

Grundy, W. M., Binzel, R. P., Buratti, B. J., Cook, J. C., Cruikshank, D. P., Dalle Ore, C. M., 

Earle, A. M., Ennico, K., Howett, C. J. A., Lunsford, A. W., Olkin, C. B., Parker, A. H., 

Philippe, S., Protopapa, S., Quirico, E., Reuter, D. C., Schmitt, B., Singer, K. N., Verbiscer, A. 

J., Beyer, R. A., Buie, M. W., Cheng, A. F., Jennings, D. E., Linscott, I. R., Parker, J. W., 

Schenk, P. M., Spencer, J. R., Stansberry, J. A., Stern, S. A., Throop, H. B., Tsang, C. C. C., 

Weaver, H. A., Weigle, G. E., Young, L. A., Mar 2016a. Surface compositions across Pluto and 

Charon. Science 351 (6279), aad9189. 

 

Grundy, W. M., Cruikshank, D. P., Gladstone, G. R., Howett, C. J. A., Lauer, T. R., Spencer, J. 

R., Summers, M. E., Buie, M. W., Earle, A. M., Ennico, K., Parker, J. W., Porter, S. B., Singer, 

K. N., Stern, S. A., Verbiscer, A. J., Beyer, R. A., Binzel, R. P., Buratti, B. J., Cook, J. C., Dalle 

Ore, C. M., Olin, C. B., Parker, A. H., Protopapa, S., Quirico, E., Retherford, K. D., Robbins, S. 

J., Schmitt, B., Stansberry, J. A., Umurhan, O. M., Weaver, H. A., Young, L. A., Zangari, A. M., 

Bray, V. J., Cheng, A. F., McKinnon, W. B., McNutt, R. L., Morre, J. M., Nimmo, F., Reuter, D. 

C., Schenk, P. M., New Horizons Science Team, Stern, S. A., Bagenal, F., Ennico, K., 

Gladstone, G. R., Grundy, W. M., McKinnon, W. B., Moore, J. M., Olkin, C. B., Spencer, J. R., 

Weaver, H. A., Young, L. A., Andert, T., Barnouin, O., Beyer, R. A., Binzel, R. P., Bird, M., 

Bray, V. J., Brozovic, M., Buie, M. W., Buratti, B. J., Cheng, A. F., Cook, J. C., Cruikshank, D. 

P., Dalle Ore, C. M., Earler, A. M., Elliott, H. A., Greathouse, T. K., Hahn, M., Hamilton, D. P., 

Hill, M. E., Hinson, D. P., Hofgartner, J., Horanyi, M., Howard, A. D., Howett, C. J. A., 

Jennings, D. E., Kammer, J. A., Kollmann, P., Lauer, T. R., Lavvas, P., Linscott, I. R. Lisse, C. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

M., Lunsford, A. W., McComas, D. J., McNutt, R. L., J., Mutchler, M., Nimmo, F., Nunez, J. I., 

Paetzold, M., Parker, A. H., Parker, J. W., Philippe, S., Piquette, M., Porter, S. B., Protopapa, S., 

Quirico, E., Reitsema, H. J., Reuter, D. C., Robbins, S. J., Roberts, J. H., Runyon, K., Schenk, P. 

M., Schindhelm, E., Schmitt, B., Showalter, M. R., Singer, K. N., Stansberry, J. A., Steffl, A. J., 

Strobel, D. F., Stryk, T., Summers, M. E., Szalay, J. R., Throop, H. B., Tsang, C. C. C., Tyler, G. 

L., Umurhan, O. M., Verbiscer, A. J., Versteeg, M. H., Weigle, G. E., I., White, O. L., Woods, 

W. W., Young, E. F., Zangari, A. M., Nov 2016b. The formation of Charon's red poles from 

seasonally cold-trapped volatiles. Nature 539 (7627), 65-68. 

 

Grundy, W., M., et al., Feb 2020. Color, Composition, and Thermal Environment of Kuiper Belt 

Object (486958) Arrokoth. Science eaay3705. 

 

Hapke, B., 2012. Theory of Reflectance and Emittance Spectroscopy. Cambridge University 

Press. 

 

Hofgartner, J. D., Buratti, B. J., Devins, S. L., Beyer, R. A., Schenk, P., Stern, S. A., Weaver, H. 

A., Olkin, C. B., Cheng, A., Ennico, K., Lauer, T. R., McKinnon, W. B., Spencer, J., Young, L. 

A., New Horizons Science Team, Mar 2018. A search for temporal changes on Pluto and 

Charon. Icarus 302, 273-284. 

 

Hofgartner, J. D., Buratti, B. J., Hayne, P. O., Young, L. A., Dec 2019. Ongoing resurfacing of 

KBO Eris by volatile transport in local, collisional, sublimation atmosphere regime. Icarus 334, 

52-61. 

 

Johnson, T. V., Lunine, J. I., May 2005. Saturn's moon Phoebe as a captured body from the outer 

Solar System. Nature 435 (7038), 69-71. 

 

Kokotanekova, R., Snodgrass, C., Lacerda, P., Green, S. F., Lowry, S. C., Fernandez, Y. R., 

Tubiana, C., Fitzsimmons, A., Hsieh, H. H., Nov 2017. Rotation of cometary nuclei: new light 

curves and an update of the ensemble properties of Jupiter-family comets. Monthly Notices of 

the Royal Astronomical Society 471 (3), 2974-3007. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

Lacerda, P., Fornasier, S., Lellouch, E., Kiss, C., Vilenius, E., Santos-Sanz, P., Rengel, M., 

Muller, T., Stansberry, J., Duffard, R., Delsanti, A., Guilbert-Lepoutre, A., Sep 2014. The 

Albedo-Color Diversity of Transneptunian Objects. The Astrophysical Journal Letters 793 (1), 

L2. 

 

McEwen, A. S., Jul 1986. Exogenic and endogenic albedo and color patterns on Europa. Journal 

of Geophysical Research 91, 8077-8097. 

 

McKinnon, W. B., Stern, S. A., Weaver, H. A., Nimmo, F., Bierson, C. J., Grundy, W. M., Cook, 

J. C., Cruikshank, D. P., Parker, A. H., Moore, J. M., Spencer, J. R., Young, L. A., Olkin, C. B., 

Ennico Smith, K., New Horizons Geology, Geophysics and Imaging, Composition Theme 

Teams, May 2017. Origin of the Pluto-Charon system: Constraints from the New Horizons flyby. 

Icarus 287, 2-11. 

 

Miller, C., Verbiscer, A. J., Chanover, N. J., Holtzman, J. A., Helfenstein, P., Apr 2011. 

Comparing Phoebe's 2005 opposition surge in four visible light filters. Icarus 212 (2), 819-834. 

 

Moore, J. M., McKinnon, W. B., Spencer, J. R., Howard, A. D., Schenk, P. M., Beyer, R. A., 

Nimmo, F., Singer, K. N., Umurhan, O. M., White, O. L., Stern, S. A., Ennico, K., Olkin, C. B., 

Weaver, H. A., Young, L. A., Binzel, R. P., Buie, M. W., Buratti, B. J., Cheng, A. F., 

Cruikshank, D. P., Grundy, W. M., Linscott, I. R., Reitsema, H. J., Reuter, D. C., Showalter, M. 

R., Bray, V. J., Chavez, C. L., Howett, C. J. A., Lauer, T. R., Lisse, C. M., Parker, A. H., Porter, 

S. B., Robbins, S. J., Runyon, K., Stryk, T., Throop, H. B., Tsang, C. C. C., Verbiscer, A. J., 

Zangari, A. a. M., Chaikin, A. L., Wilhelms, D. E., Bagenal, F., Gladstone, G. R., Andert, T., 

Andrews, J., Banks, M., Bauer, B., Bauman, J., Barnouin, O. S., Bedini, P., Beisser, K., 

Bhaskaran, S., Birath, E., Bird, M., Bogan, D. J., Bowman, A., Brozovic, M., Bryan, C., 

Buckley, M. R., Bushman, S. S., Calloway, A., Carcich, B., Conard, S., Conrad, C. A., Cook, J. 

C., Custodio, O. S., Ore, C. M. D., Deboy, C., Dischner, Z. J. B., Dumont, P., Earle, A. M., 

Elliott, H. A., Ercol, J., Ernst, C. M., Finley, T., Flanigan, S. H., Fountain, G., Freeze, M. J., 

Greathouse, T., Green, J. L., Guo, Y., Hahn, M., Hamilton, D. P., Hamilton, S. A., Hanley, J., 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

Harch, A., Hart, H. M., Hersman, C. B., Hill, A., Hill, M. E., Hinson, D. P., Holdridge, M. E., 

Horanyi, M., Jackman, C., Jacobson, R. A., Jennings, D. E., Kammer, J. A., Kang, H. K., 

Kaufmann, D. E., Kollmann, P., Krimigis, S. M., Kusnierkiewicz, D., Lee, J. E., Lindstrom, K. 

L., Lunsford, A. W., Mallder, V. A., Martin, N., McComas, D. J., McNutt, R. L., Mehoke, D., 

Mehoke, T., Melin, E. D., Mutchler, M., Nelson, D., Nunez, J. I., Ocampo, A., Owen, W. M., 

Paetzold, M., Page, B., Parker, J. W., Pelletier, F., Peterson, J., Pinkine, N., Piquette, M., 

Protopapa, S., Redfern, J., Roberts, J. H., Rogers, G., Rose, D., Retherford, K. D., 

Ryschkewitsch, M. G., Schindhelm, E., Sepan, B., Soluri, M., Stanbridge, D., Steffl, A. J., 

Strobel, D. F., Summers, M. E., Szalay, J. R., Tapley, M., Taylor, A., Taylor, H., Tyler, G. L., 

Versteeg, M. H., Vincent, M., Webbert, R., Weidner, S., Weigle, G. E., Whittenburg, K., 

Williams, B. G., Williams, K., Williams, S., Woods, W. W., Zirnstein, E., Mar 2016. The 

geology of Pluto and Charon through the eyes of New Horizons. Science 351 (6279), 1284-1293. 

 

Olkin, C. B., Spencer, J. R., Grundy, W. M., Parker, A. H., Beyer, R. A., Schenk, P. M., Howett, 

C. J. A., Stern, S. A., Reuter, D. C., Weaver, H. A., Young, L. A., Ennico, K., Binzel, R. P., 

Buie, M. W., Cook, J. C., Cruikshank, D. P., Dalle Ore, C. M., Earle, A. M., Jennings, D. E., 

Singer, K. N., Linscott, I. E., Lunsford, A. W., Protopapa, S., Schmitt, B., Weigle, E., the New 

Horizons Science Team, Dec 2017. The Global Color of Pluto from New Horizons. The 

Astronomical Journal 154 (6), 258. 

 

Petit, J. M., Kavelaars, J. J., Gladman, B. J., Jones, R. L., Parker, J. W., Van Laerhoven, C., 

Nicholson, P., Mars, G., Rousselot, P., Mousis, O., Marsden, B., Bieryla, A., Taylor, M., Ashby, 

M. L. N., Benavidez, P., Campo Bagatin, A., Bernabeu, G., Oct 2011. The Canada-France 

Ecliptic Plane Survey - Full Data Release: The Orbital Structure of the Kuiper Belt. The 

Astronomical Journal 142 (4), 131. 

 

Pieters, C. M., Noble, S. K., Oct 2016. Space weathering on airless bodies. Journal of 

Geophysical Research (Planets) 121 (10), 1865-1884. 

 

Porter, S., Beyer, R., Keane, J., Umurhan, O., Bierson, C., Grundy, W., Buie, M., Showalter, M., 

Spencer, J. Stern, A., Weaver, H., Olkin, C. Parker, J., Verbiscer, A., New Horizons Geology, 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

Geophysics, and Imaging (GGI) Team, 2019. The Shape and Pole of (486958) 2014 MU69. In: 

AAS/Division for Planetary Sciences Meeting Abstracts #51. AAS/Division for Planetary 

Sciences Meeting Abstracts. 

 

Porter, S. B., Buie, M. W., Parker, A. H., Spencer, J. R., Benecchi, S., Tanga, P., Verbiscer, A., 

Kavelaars, J. J., Gwyn, S. D. J., Young, E. F., Weaver, H. A., Olkin, C. B., Parker, J. W., Stern, 

S. A., Jul 2018. High-precision Orbit Fitting and Uncertainty Analysis of (486958) 2014 MU69. 

The Astronomical Journal 156 (1), 20. 

 

Schaller, E. L., Brown, M. E., Apr 2007. Volatile Loss and Retention on Kuiper Belt Objects. 

The Astrophysical Journal 659 (1), L61-L64. 

 

Singer, K., N., McKinnon, W., B., Spencer, J., R., Greenstreet, S., Gladman, B., Robbins, S., J., 

Runyon, K., D., Schenk, P., M., Kavelaars, J., J., Lauer, T., R., Parker, A., H., Stern S., A., 

Weaver, H., A., Olkin, C., B., New Horizons Science Team, 2019. Impact craters on 2014 

MU69: The geologic history of MU69 and Kuiper belt object size-frequency distributions. In: 

AAS/Division for Planetary Sciences Meeting Abstracts #51. AAS/Division for Planetary 

Sciences Meeting Abstracts. 

 

Spencer, J., R., et al., Feb 2020. The Geology and Geophysics of Kuiper Belt Object (486958) 

Arrokoth. Science aay3999. 

 

Squyres, S. W., Veverka, J., Apr 1982. Variation of albedo with solar incidence angle on 

planetary surfaces. Icarus 50 (1), 115-122. 

 

Stern, S. A., Weaver, H. A., Spencer, J. R., Olkin, C. B., Gladstone, G. R., Grundy, W. M., 

Moore, J. M., Cruikshank, D. P., Elliott, H. A., McKinnon, W. B., Parker, J. W., Verbiscer, A. J., 

Young, L. A., Aguilar, D. A., Albers, J. M., Andert, T., Andrews, J. P., Bagenal, F., Banks, M. 

E., Bauer, B. A., Bauman, J. A., Bechtold, K. E., Beddingfield, C. B., Behrooz, N., Beisser, K. 

B., Benecchi, S. D., Bernardoni, E., Beyer, R. A., Bhaskaran, S., Bierson, C. J., Binzel, R. P., 

Birath, E. M., Bird, M. K., Boone, D. R., Bowman, A. F., Bray, V. J., Britt, D. T., Brown, L. E., 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

Buckley, M. R., Buie, M. W., Buratti, B. J., Burke, L. M., Bushman, S. S., Carcich, B., Chaikin, 

A. L., Chavez, C. L., Cheng, A. F., Colwell, E. J., Conard, S. J., Conner, M. P., Conrad, C. A., 

Cook, J. C., Cooper, S. B., Custodio, O. S., Dalle Ore, C. M., Deboy, C. C., Dharmavaram, P., 

Dhingra, R. D., Dunn, G. F., Earle, A. M., Egan, A. F., Eisig, J., El-Maarry, M. R., Engelbrecht, 

C., Enke, B. L., Ercol, C. J., Fattig, E. D., Ferrell, C. L., Finley, T. J., Firer, J., Fischetti, J., 

Folkner, W. M., Fosbury, M. N., Fountain, G. H., Freeze, J. M., Gabasova, L., Glaze, L. S., 

Green, J. L., Griffth, G. A., Guo, Y., Hahn, M., Hals, D. W., Hamilton, D. P., Hamilton, S. A., 

Hanley, J. J., Harch, A., Harmon, K. A., Hart, H. M., Hayes, J., Hersman, C. B., Hill, M. E., Hill, 

T. A., Hofgartner, J. D., Holdridge, M. E., Horanyi, M., Hosadurga, A., Howard, A. D., Howett, 

C. J. A., Jaskulek, S. E., Jennings, D. E., Jensen, J. R., Jones, M. R., Kang, H. K., Katz, D. J., 

Kaufmann, D. E., Kavelaars, J. J., Keane, J. T., Keleher, G. P., Kinczyk, M., Kochte, M. C., 

Kollmann, P., Krimigis, S. M., Kruizinga, G. L., Kusnierkiewicz, D. Y., Lahr, M. S., Lauer, T. 

R., Lawrence, G. B., Lee, J. E., Lessac-Chenen, E. J., Linscott, I. R., Lisse, C. M., Lunsford, A. 

W., Mages, D. M., Mallder, V. A., Martin, N. P., May, B. H., McComas, D. J., McNutt, R. L., 

Mehoke, D. S., Mehoke, T. S., Nelson, D. S., Nguyen, H. D., N_u~nez, J. I., Ocampo, A. C., 

Owen, W. M., Oxton, G. K., Parker, A. H., P• atzold, M., Pelgrift, J. Y., Pelletier, F. J., Pineau, 

J. P., Piquette, M. R., Porter, S. B., Protopapa, S., Quirico, E., Redfern, J. A., Regiec, A. L., 

Reitsema, H. J., Reuter, D. C., Richardson, D. C., Riedel, J. E., Ritterbush, M. A., Robbins, S. J., 

Rodgers, D. J., Rogers, G. D., Rose, D. M., Rosendall, P. E., Runyon, K. D., Ryschkewitsch, M. 

G., Saina, M. M., Salinas, M. J., Schenk, P. M., Scherrer, J. R., Schlei, W. R., Schmitt, B., 

Schultz, D. J., Schurr, D. C., Scipioni, F., Sepan, R. L., Shelton, R. G., Showalter, M. R., Simon, 

M., Singer, K. N., Stahlheber, E. W., Stanbridge, D. R., Stansberry, J. A., Steffl, A. J., Strobel, 

D. F., Stothoff, M. M., Stryk, T., Stuart, J. R., Summers, M. E., Tapley, M. B., Taylor, A., 

Taylor, H. W., Tedford, R. M., Throop, H. B., Turner, L. S., Umurhan, O. M., Van Eck, J., 

Velez, D., Versteeg, M. H., Vincent, M. A., Webbert, R. W., Weidner, S. E., Weigle, G. E., 

Wendel, J. R., White, O. L., Whittenburg, K. E., Williams, B. G., Williams, K. E., Williams, S. 

P., Winters, H. L., Zangari, A. M., Zurbuchen, T. H., May 2019. Initial results from the New 

Horizons exploration of 2014 MU69, a small Kuiper Belt object. Science 364 (6441), aaw9771. 

 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

Vilenius, E., Kiss, C., Muller, T., Mommert, M., Santos-Sanz, P., Pal, A., Stansberry, J., Mueller, 

M., Peixinho, N., Lellouch, E., Fornasier, S., Delsanti, A., Thirouin, A., Ortiz, J. L., Duffard, R., 

Perna, D., Henry, F., Apr 2014. “TNOs are Cool”: A survey of the trans-Neptunian region. 

X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations. Astronomy 

and Astrophysics 564, A35. 

 

Weaver, H. A., Buie, M. W., Buratti, B. J., Grundy, W. M., Lauer, T. R., Olkin, C. B., Parker, A. 

H., Porter, S. B., Showalter, M. R., Spencer, J. R., Stern, S. A., Verbiscer, A. J., McKinnon, W. 

B., Moore, J. M., Robbins, S. J., Schenk, P., Singer, K. N., Barnouin, O. S., Cheng, A. F., Ernst, 

C. M., Lisse, C. M., Jennings, D. E., Lunsford, A. W., Reuter, D. C., Hamilton, D. P., Kaufmann, 

D. E., Ennico, K., Young, L. A., Beyer, R. A., Binzel, R. P., Bray, V. J., Chaikin, A. L., Cook, J. 

C., Cruikshank, D. P., Dalle Ore, C. M., Earle, A. M., Gladstone, G. R., Howett, C. J. A., 

Linscott, I. R., Nimmo, F., Parker, J. W., Philippe, S., Protopapa, S., Reitsema, H. J., Schmitt, B., 

Stryk, T., Summers, M. E., Tsang, C. C. C., Throop, H. H. B., White, O. L., Zangari, A. M., Mar 

2016. The small satellites of Pluto as observed by New Horizons. Science 351 (6279), aae0030. 

 

Weaver, H., A., et al., submitted. In-Flight Performance and Calibration of the LOng Range 

Reconnaissance Imager (LORRI) for the New Horizons Mission. Publications of the 

Astronomical Society of the Pacific. 

 

Willmer, C. N. A., Jun 2018. The Absolute Magnitude of the Sun in Several Filters. The 

Astrophysical Journal Supplement Series 236 (2), 47.  

 

Copyright 2020. All rights reserved. 

 

Highlights 

Geometric albedo > than mean but consistent with distribution of cold classical KBOs 

 

Maps of normal reflectance & hemispherical albedo of Arrokoth’s surface are presented 

 

Normal reflectance of Arrokoth varies with location with  Gaussian distribution 

 

Normal reflectance distributions of Arrokoth’s two lobes are very similar 
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Hemispherical albedo varies substantially with both incidence angle and location 
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