500 research outputs found

    Quantum jumps of light recording the birth and death of a photon in a cavity

    Full text link
    A microscopic system under continuous observation exhibits at random times sudden jumps between its states. The detection of this essential quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system evolution. Quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, which is not the case of the jumps of light quanta. Usual photodetectors absorb light and are thus unable to detect the same photon twice. They must be replaced by a transparent counter 'seeing' photons without destroying them3. Moreover, the light has to be stored over a duration much longer than the QND detection time. We have fulfilled these challenging conditions and observed photon number quantum jumps. Microwave photons are stored in a superconducting cavity for times in the second range. They are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms highly correlated in the same state, are interrupted by sudden state-switchings. These telegraphic signals record, for the first time, the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons opens new perspectives for the exploration of the quantum to classical boundary

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Intravenous Fluid Administration May Improve Post-Operative Course of Patients with Chronic Subdural Hematoma: A Retrospective Study

    Get PDF
    Background: The treatment of chronic subdural hematoma (cSDH) is still charged of significant risk of hematoma recurrence. Patient-related predictors and the surgical procedures themselves have been addressed in many studies. In contrast, postoperative management has infrequently been subjected to detailed analysis. Moreover variable intravenous fluid administration (IFA) was not reported in literature till now in the context of cSDH treatment. Methodology/Principal Findings: A total of 45 patients with cSDH were operated in our department via two burr hole craniostomy within one calendar year. Downward drainage was routinely left in hematoma cavity for a one day. Independent variables selected for the analysis were related to various aspects of patient management, including IFA. Two dependent variables were chosen as measure of clinical course: the rate of hematoma recurrence (RHR) and neurological status at discharge from hospital expressed in points of Glasgow Outcome Scale (GOS). Univariate and multivariate regression analyses were performed. Hematoma recurrence with subsequent evacuation occurred in 7 (15%) patients. Univariate regression analysis revealed that length of IFA after surgery influenced both dependent variables: RHR (p = 0.045) and GOS (p = 0.023). Multivariate regression performed by backward elimination method confirmed that IFA is a sole independent factor influencing RHR. Post hoc dichotomous division of patients revealed that those receiving at least 2000 ml/day over 3 day period revealed lower RHR than the group with less intensive IFA. (p = 0.031)

    Phase II study of single agent capecitabine in the treatment of metastatic non-pancreatic neuroendocrine tumours

    Get PDF
    BACKGROUND: This study sought to determine the safety of single agent capecitabine, a pro-drug of 5FU, in patients with metastatic non-pancreatic neuroendocrine tumours (NETs). METHODS: Multicentre phase II, first-line study design. Oral capecitabine was administered on days 1-14 of 3-week cycles. RESULTS: Treatment was safe and well tolerated. Common toxicities were diarrhoea and fatigue. CONCLUSION: The study provides evidence to support the use of capecitabine as a substitute for infusional 5FU in the management of NETs

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    EORTC Early Clinical Studies Group early phase II trial of S-1 in patients with advanced or metastatic colorectal cancer

    Get PDF
    Cancer of the colon and rectum is one of the most frequent malignancies both in the US and Europe. Standard palliative therapy is based on 5-fluorouracil/folinic acid combinations, with or without oxaliplatin or irinotecan, given intravenously. Oral medication has the advantage of greater patient convenience and acceptance and potential cost savings. S-1 is a new oral fluorinated pyrimidine derivative. In a nonrandomized phase II study, patients with advanced/metastatic colorectal cancer were treated with S-1 at 40 mg m-2 b.i.d. for 28 consecutive days, repeated every 5 weeks, but by amendment the dose was reduced to 35 mg m-2 during the study because of a higher than expected number of severe adverse drug reactions. In total 47 patients with colorectal cancer were included. In the 37 evaluable patients there were nine partial responses (24%), 17 stable diseases (46%) and 11 patients had progressive disease (30%). Diarrhoea occurred frequently and was often severe: in the 40 and 35 mg m-2 group, respectively, 38 and 35% of the patients experienced grade 3-4 diarrhoea. The other toxicities were limited and manageable. S-1 is active in advanced colorectal cancer, but in order to establish a safer dose the drug should be subject to further investigations

    Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation

    Get PDF
    The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1

    Weak and strong solutions of equations of compressible magnetohydrodynamics

    Get PDF
    International audienceThis article proposes a review of the analysis of the system of magnetohydrodynamics (MHD). First, we give an account of the modelling asumptions. Then, the results of existence of weak solutions, using the notion of renormalized solutions. Then, existence of strong solutions in the neighbourhood of equilibrium states is reviewed, in particular with the method of Kawashima and Shizuta. Finally, the special case of dimension one is highlighted : the use of Lagrangian coordinates gives a simpler system, which is solved by standard techniques
    corecore