177 research outputs found
Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction
Contains fulltext :
138516.pdf (publisher's version ) (Open Access)Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major regulatory mechanism by which TRPM6 function is controlled
Reduction of Oxidative Stress in Chronic Kidney Disease Does Not Increase Circulating alpha-Klotho Concentrations
The CKD-associated decline in soluble α-Klotho levels is considered detrimental. Some in vitro and in vivo animal studies have shown that anti-oxidant therapy can upregulate the expression of α-Klotho in the kidney. We examined the effect of anti-oxidant therapy on α-Klotho concentrations in a clinical cohort with mild tot moderate chronic kidney disease (CKD). We performed a post-hoc analysis of a prospective randomized trial involving 62 patients with mild to moderate CKD (the ATIC study), all using an angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) for 12 months. On top of that, the intervention group received anti-oxidative therapy consisting of the combination of pravastatin (40 mg/d) and vitamin E (α-tocopherol acetate, 300 mg/d) while the placebo was not treated with anti-oxidants. α-Klotho concentrations were measured at baseline and after 12 months of anti-oxidant therapy. Data were analysed using T-tests and Generalized Estimating Equations, adjusting for potential confounders such as vitamin D, parathyroid hormone, fibroblast-growth-factor 23 (FGF23) and eGFR. The cohort existed of 62 patients with an eGFR (MDRD) of 35 ± 14 ml/min/1.72 m2, 34 were male and mean age was 53.0 ± 12.5 years old. Anti-oxidative therapy did successfully reduce oxLDL and LDL concentrations (P <0.001). α-Klotho concentrations did not change in patients receiving either anti-oxidative therapy (476.9 ± 124.3 to 492.7 ± 126.3 pg/mL, P = 0.23) nor in those receiving placebo 483.2 ± 142.5 to 489.6 ± 120.3 pg/mL, P = 0.62). Changes in α-Klotho concentrations were not different between both groups (p = 0.62). No evidence was found that anti-oxidative therapy affected α-Klotho concentrations in patients with mild-moderate CKD
Dietary Mg2+ Intake and the Na+/Mg2+ Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes
Cardiomyocytes are among the most energy-intensive cell types. Interplay between the components of cellular magnesium (Mg) homeostasis and energy metabolism in cardiomyocytes is poorly understood. We have investigated the effects of dietary Mg content and presence/functionality of the Na+/Mg2+ exchanger SLC41A1 on enzymatic functions of selected constituents of the Krebs cycle and complexes of the electron transport chain (ETC). The activities of aconitate hydratase (ACON), isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (KGDH), and ETC complexes CI–CV have been determined in vitro in mitochondria isolated from hearts of wild-type (WT) and Slc41a1−/− mice fed a diet with either normal or low Mg content. Our data demonstrate that both, the type of Mg diet and the Slc41a1 genotype largely impact on the activities of enzymes of the Krebs cycle and ETC. Moreover, a compensatory effect of Slc41a1−/− genotype on the effect of low Mg diet on activities of the tested Krebs cycle enzymes has been identified. A machine-learning analysis identified activities of ICDH, CI, CIV, and CV as common predictors of the type of Mg diet and of CII as suitable predictor of Slc41a1 genotype. Thus, our data delineate the effect of dietary Mg content and of SLC41A1 functionality on the energy-production in cardiac mitochondria
Low plasma magnesium concentration and future abdominal aortic calcifications in moderate chronic kidney disease
BACKGROUND: Higher plasma magnesium concentrations are associated with reduced cardiovascular disease risk in chronic kidney disease (CKD) patients. The importance of plasma magnesium concentration for vascular calcification in earlier stages of CKD remains underexplored. This study investigated whether plasma magnesium is a determinant for the presence and severity of vascular calcification in moderate CKD. METHODS: Retrospective analysis was performed using abdominal aortic calcification (AAC) scores in 280 patients with stage 3 and 4 CKD enrolled in the MASTERPLAN trial. Lateral abdominal X-ray was used to evaluate AAC. Plasma magnesium concentration were measured over time. A zero-inflated Poisson model determined the association between plasma magnesium concentration and AAC. RESULTS: 79 out of 280 patients did not have AAC, and in patients with AAC the median calcification score was 3.5 (interquartile range: 0.0-8.6). The mean plasma magnesium concentration was 0.76 ± 0.10 mmol/L at baseline. A 0.1 mmol/L higher plasma magnesium concentration was associated with lower AAC of 0.07 point (95% CI -0.28 - 0.14). A 0.1 mmol/L higher plasma magnesium lowered the odds of detecting any AAC by 30% (OR = 0.63; 95% CI 0.29-1.37). After 1 year and 4 years (at time of X-ray) of follow-up this association was attenuated (OR = 0.93; 95% CI 0.61-1.43 and 0.93; 95% CI 0.60-1.45, respectively). None of these associations reached statistical significance. CONCLUSIONS: Plasma magnesium concentration at baseline is not associated with the risk for future AAC. Interventions increasing magnesium to avoid vascular calcification may have greatest potential in early CKD stages prior to onset of vascular calcification
Hypomagnesaemia with varying degrees of extrarenal symptoms as a consequence of heterozygous CNNM2 variants
Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype–phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis
Uremic Toxins Inhibit Transport by Breast Cancer Resistance Protein and Multidrug Resistance Protein 4 at Clinically Relevant Concentrations
During chronic kidney disease (CKD), there is a progressive accumulation of toxic solutes due to inadequate renal clearance. Here, the interaction between uremic toxins and two important efflux pumps, viz. multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) was investigated. Membrane vesicles isolated from MRP4- or BCRP-overexpressing human embryonic kidney cells were used to study the impact of uremic toxins on substrate specific uptake. Furthermore, the concentrations of various uremic toxins were determined in plasma of CKD patients using high performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Our results show that hippuric acid, indoxyl sulfate and kynurenic acid inhibit MRP4-mediated [3H]-methotrexate ([3H]-MTX) uptake (calculated Ki values: 2.5 mM, 1 mM, 25 µM, respectively) and BCRP-mediated [3H]-estrone sulfate ([3H]-E1S) uptake (Ki values: 4 mM, 500 µM and 50 µM, respectively), whereas indole-3-acetic acid and phenylacetic acid reduce [3H]-MTX uptake by MRP4 only (Ki value: 2 mM and IC50 value: 7 mM, respectively). In contrast, p-cresol, p-toluenesulfonic acid, putrescine, oxalate and quinolinic acid did not alter transport mediated by MRP4 or BCRP. In addition, our results show that hippuric acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid and phenylacetic acid accumulate in plasma of end-stage CKD patients with mean concentrations of 160 µM, 4 µM, 129 µM, 1 µM and 18 µM, respectively. Moreover, calculated Ki values are below the maximal plasma concentrations of the tested toxins. In conclusion, this study shows that several uremic toxins inhibit active transport by MRP4 and BCRP at clinically relevant concentrations
Genome-wide Meta-analysis Unravels Novel Interactions between Magnesium Homeostasis and Metabolic Phenotypes
Magnesium (Mg <sup>2+</sup> ) homeostasis is critical for metabolism. However, the genetic determinants of the renal handling of Mg <sup>2+</sup> , which is crucial for Mg <sup>2+</sup> homeostasis, and the potential influence on metabolic traits in the general population are unknown. We obtained plasma and urine parameters from 9099 individuals from seven cohorts, and conducted a genome-wide meta-analysis of Mg <sup>2+</sup> homeostasis. We identified two loci associated with urinary magnesium (uMg), rs3824347 (P=4.4×10 <sup>-13</sup> ) near TRPM6, which encodes an epithelial Mg <sup>2+</sup> channel, and rs35929 (P=2.1×10 <sup>-11</sup> ), a variant of ARL15, which encodes a GTP-binding protein. Together, these loci account for 2.3% of the variation in 24-hour uMg excretion. In human kidney cells, ARL15 regulated TRPM6-mediated currents. In zebrafish, dietary Mg <sup>2+</sup> regulated the expression of the highly conserved ARL15 ortholog arl15b, and arl15b knockdown resulted in renal Mg <sup>2+</sup> wasting and metabolic disturbances. Finally, ARL15 rs35929 modified the association of uMg with fasting insulin and fat mass in a general population. In conclusion, this combined observational and experimental approach uncovered a gene-environment interaction linking Mg <sup>2+</sup> deficiency to insulin resistance and obesity
- …