141 research outputs found

    Breath figures under electrowetting: electrically controlled evolution of drop condensation patterns

    Get PDF
    We show that electrowetting (EW) with structured electrodes significantly modifies the distribution of drops condensing onto flat hydrophobic surfaces by aligning the drops and by enhancing coalescence. Numerical calculations demonstrate that drop alignment and coalescence are governed by the drop size-dependent electrostatic energy landscape that is imposed by the electrode pattern and the applied voltage. Such EW-controlled migration and coalescence of condensate drops significantly alter the statistical characteristics of the ensemble of droplets. The evolution of the drop size distribution displays self-similar characteristics that significantly deviate from classical breath figures on homogeneous surfaces once the electrically-induced coalescence cascades set in beyond a certain critical drop size. The resulting reduced surface coverage, coupled with earlier drop shedding under EW, enhances the net heat transfer.Comment: 5 pages, 5 figure

    Reasoning About the Transfer of Control

    Full text link
    We present DCL-PC: a logic for reasoning about how the abilities of agents and coalitions of agents are altered by transferring control from one agent to another. The logical foundation of DCL-PC is CL-PC, a logic for reasoning about cooperation in which the abilities of agents and coalitions of agents stem from a distribution of atomic Boolean variables to individual agents -- the choices available to a coalition correspond to assignments to the variables the coalition controls. The basic modal constructs of DCL-PC are of the form coalition C can cooperate to bring about phi. DCL-PC extends CL-PC with dynamic logic modalities in which atomic programs are of the form agent i gives control of variable p to agent j; as usual in dynamic logic, these atomic programs may be combined using sequence, iteration, choice, and test operators to form complex programs. By combining such dynamic transfer programs with cooperation modalities, it becomes possible to reason about how the power of agents and coalitions is affected by the transfer of control. We give two alternative semantics for the logic: a direct semantics, in which we capture the distributions of Boolean variables to agents; and a more conventional Kripke semantics. We prove that these semantics are equivalent, and then present an axiomatization for the logic. We investigate the computational complexity of model checking and satisfiability for DCL-PC, and show that both problems are PSPACE-complete (and hence no worse than the underlying logic CL-PC). Finally, we investigate the characterisation of control in DCL-PC. We distinguish between first-order control -- the ability of an agent or coalition to control some state of affairs through the assignment of values to the variables under the control of the agent or coalition -- and second-order control -- the ability of an agent to exert control over the control that other agents have by transferring variables to other agents. We give a logical characterisation of second-order control

    Controlling shedding characteristics of condensate drops using electrowetting

    Get PDF
    We show here that ac electrowetting (ac-EW) with structured electrodes can be used to control the gravity-driven shedding of drops condensing onto flat hydrophobic surfaces. Under ac-EW with straight interdigitated electrodes, the condensate drops shed with relatively smaller radii due to the ac-EW-induced reduction of contact angle hysteresis. The smaller shedding radius, coupled with the enhanced growth due to coalescence under EW, results in increased shedding rate. We also show that the condensate droplet pattern under EW can be controlled, and the coalescence can be further enhanced, using interdigitated electrodes with zigzag edges. Such enhanced coalescence in conjunction with the electrically-induced trapping effect due to the electrode geometry results in larger shedding radius, but lower shedding rate. However, the shedding characteristics can be further optimized by applying the electrical voltage intermittently. We finally provide an estimate of the condensate volume removed per unit time in order to highlight how it is enhanced using ac-EW-controlled dropwise condensation.Comment: 5 pages, 3 figure

    An integrated network model of psychotic symptoms

    Get PDF
    AbstractThe full body of research on the nature of psychosis and its determinants indicates that a considerable number of factors are relevant to the development of hallucinations, delusions, and other positive symptoms, ranging from neurodevelopmental parameters and altered connectivity of brain regions to impaired cognitive functioning and social factors. We aimed to integrate these factors in a single mathematical model based on network theory. At the microscopic level this model explains positive symptoms of psychosis in terms of experiential equivalents of robust, high-frequency attractor states of neural networks. At the mesoscopic level it explains them in relation to global brain states, and at the macroscopic level in relation to social-network structures and dynamics. Due to the scale-free nature of biological networks, all three levels are governed by the same general laws, thereby allowing for an integrated model of biological, psychological, and social phenomena involved in the mediation of positive symptoms of psychosis. This integrated network model of psychotic symptoms (INMOPS) is described together with various possibilities for application in clinical practice

    Screening for abnormal glycosylation in a cohort of adult liver disease patients

    Get PDF
    Congenital Disorders of Glycosylation (CDG) are a rapidly expanding group of rare genetic defects in glycosylation. In a novel CDG subgroup of Vacuolar-ATPase assembly defects various degrees of hepatic injury have been described, including end stage liver disease. However, the CDG diagnostic workflow can be complex as liver disease per se may be associated with abnormal glycosylation. Therefore, we collected serum samples of patients with a wide range of liver pathology to study the performance and yield of two CDG screening methods. Our aim was to identify glycosylation patterns that could help to differentiate between primary and secondary glycosylation defects in liver disease. To this end, we analyzed serum samples of 1042 adult liver disease patients. This cohort consisted of 567 liver transplant candidates and 475 chronic liver disease patients. Our workflow consisted of screening for abnormal glycosylation by transferrin isoelectric focusing (tIEF), followed by in-depth analysis of the abnormal samples with quadruple time-of-flight mass spectrometry (QTOF-MS). Screening with tIEF resulted in identification of 247 (26%) abnormal samples. QTOF-MS analysis of 110 of those did not reveal glycosylation abnormalities comparable with those seen in V-ATPase assembly factor deficiencies. However, two patients presented with isolated sialylation deficiency. Fucosylation was significantly increased in liver transplant candidates compared to healthy controls and patients with chronic liver disease. In conclusion, a significant percentage of patients with liver disease presented with abnormal CDG screening results, however, not indicative for a V-ATPase assembly factor defect. Advanced glycoanalytical techniques assist in the dissection of secondary and primary glycosylation defects. This article is protected by copyright. All rights reserved

    Impact of donor lung quality on post-transplant recipient outcome in the Lung Allocation Score era in Eurotransplant - a historical prospective study

    Get PDF
    The aim of this study was to investigate whether there is an impact of donation rates on the quality of lungs used for transplantation and whether donor lung quality affects post-transplant outcome in the current LAS era. All consecutive adult LTx performed in Eurotransplant (ET) between January 2012 and December 2016 were included (N=3053). Donors used for LTx in countries with high donation rate were younger (42% vs. 33% ≀ 45 years, p<0.0001), were less often smokers (35% vs. 46%, p<0.0001), had more often clear chest X-rays (82% vs. 72%, p<0.0001), had better donor oxygenation ratio's (20% vs. 26% with PaO /FiO ≀ 300 mmHg, p<0.0001) and had better lung donor score values (LDS) (28% vs. 17% with LDS=6, p<0.0001) compared to donors used for LTx in countries with low donation rate. Survival rates for the groups LDS =6 and ≄7 at 5 years were 69.7% and 60.9% (p=0.007). Lung donor quality significantly impacts on long-term patient survival. Countries with a low donation rate are more oriented to using donor lungs with a lesser quality compared to countries with a high donation rate. Instead of further stretching donor eligibility criteria, the full potential of the donor pool should be realized

    Safety and Outcome of High-Flow Nasal Oxygen Therapy Outside ICU Setting in Hypoxemic Patients With COVID-19∗

    Get PDF
    OBJECTIVE: High-flow nasal oxygen (HFNO) therapy is frequently applied outside ICU setting in hypoxemic patients with COVID-19. However, safety concerns limit more widespread use. We aimed to assess the safety and clinical outcomes of initiation of HFNO therapy in COVID-19 on non-ICU wards. DESIGN: Prospective observational multicenter pragmatic study. SETTING: Respiratory wards and ICUs of 10 hospitals in The Netherlands. PATIENTS: Adult patients treated with HFNO for COVID-19-associated hypoxemia between December 2020 and July 2021 were included. Patients with treatment limitations were excluded from this analysis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Outcomes included intubation and mortality rate, duration of hospital and ICU stay, severity of respiratory failure, and complications. Using propensity-matched analysis, we compared patients who initiated HFNO on the wards versus those in ICU. Six hundred eight patients were included, of whom 379 started HFNO on the ward and 229 in the ICU. The intubation rate in the matched cohort (n = 214 patients) was 53% and 60% in ward and ICU starters, respectively (p = 0.41). Mortality rates were comparable between groups (28-d [8% vs 13%], p = 0.28). ICU-free days were significantly higher in ward starters (21 vs 17 d, p &lt; 0.001). No patient died before endotracheal intubation, and the severity of respiratory failure surrounding invasive ventilation and clinical outcomes did not differ between intubated ward and ICU starters (respiratory rate-oxygenation index 3.20 vs 3.38; Pao2:Fio2ratio 65 vs 64 mm Hg; prone positioning after intubation 81 vs 78%; mortality rate 17 vs 25% and ventilator-free days at 28 d 15 vs 13 d, all p values &gt; 0.05). CONCLUSIONS: In this large cohort of hypoxemic patients with COVID-19, initiation of HFNO outside the ICU was safe, and clinical outcomes were similar to initiation in the ICU. Furthermore, the initiation of HFNO on wards saved time in ICU without excess mortality or complicated course. Our results indicate that HFNO initiation outside ICU should be further explored in other hypoxemic diseases and clinical settings aiming to preserve ICU capacity and healthcare costs.</p

    Impact of donor lung quality on post-transplant recipient outcome in the Lung Allocation Score era in Eurotransplant – a historical prospective study

    Get PDF
    The aim of this study was to investigate whether there is an impact of donation rates on the quality of lungs used for transplantation and whether donor lung quality affects post-transplant outcome in the current Lung Allocation Score era. All consecutive adult LTx performed in Eurotransplant (ET) between January 2012 and December 2016 were included (N = 3053). Donors used for LTx in countries with high donation rate were younger (42% vs. 33% ≀45 years, P < 0.0001), were less often smokers (35% vs. 46%, P < 0.0001), had more often clear chest X-rays (82% vs. 72%, P < 0.0001), had better donor oxygenation ratios (20% vs. 26% with PaO2/FiO2 ≀ 300 mmHg, P < 0.0001), and had better lung donor score values (LDS; 28% vs. 17% with LDS = 6, P < 0.0001) compared with donors used for LTx in countries with low donation rate. Survival rates for the groups LDS = 6 and ≄7 at 5 years were 69.7% and 60.9% (P = 0.007). Lung donor quality significantly impacts on long-term patient survival. Countries with a low donation rate are more oriented to using donor lungs with a lesser quality compared to countries with a high donation rate. Instead of further stretching donor eligibility criteria, the full potential of the donor pool should be realized

    Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I:Wet lab procedure

    Get PDF
    Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols
    • 

    corecore