5,124 research outputs found

    Substructure in clusters containing wide-angle tailed radio galaxies. I. New redshifts

    Get PDF
    We present new redshifts and positions for 635 galaxies in nine rich clusters containing Wide-Angle Tailed (WAT) radio galaxies. Combined with existing data, we now have a sample of 18 WAT-containing clusters with more than 10 redshifts. This sample contains a substantial portion of the WAT clusters in the VLA 20 cm survey of Abell clusters, including 75% of WAT clusters in the complete survey (z0.09. It is a representative sample which should not contain biases other than selection by radio morphology. We graphically present the new data using histograms and sky maps. A semi-automated procedure is used to search for emission lines in the spectra in order to add and verify galaxy redshifts. We find that the average apparent fraction of emission line galaxies is about 9% in both the clusters and the field. We investigate the magnitude completeness of our redshift surveys with CCD data for a test case, Abell 690. This case indicates that our galaxy target lists are deeper than the detection limit of a typical MX exposure, and they are 82% complete down to R=19.0. The importance of the uniformity of the placement of fibers on targets is posited, and we evaluate this in our datasets. We find some cases of non-uniformities which may influence dynamical analyses. A second paper will use this database to look for correlations between the WAT radio morphology and the cluster's dynamical state.Comment: 15 pages, 5 figures, 7 tables. To appear in the Astronomical Journa

    Transciptome Analysis Illuminates the Nature of the Intracellular Interaction in a Vertebrate-Algal Symbiosis

    Get PDF
    During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-ÎşB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial

    Co-Cultures of Oophila Amblystomatis Between Ambystoma Maculatum and Ambystoma Gracile Hosts Show Host-Symbiont Fidelity

    Get PDF
    A unique symbiosis occurs between embryos of the spotted salamander (Ambystoma maculatum) and a green alga (Oophila amblystomatis). Unlike most vertebrate host-symbiont relationships, which are ectosymbiotic, A. maculatum exhibits both an ecto- and an endo-symbiosis, where some of the green algal cells living inside egg capsules enter embryonic tissues as well as individual salamander cells. Past research has consistently categorized this symbiosis as a mutualism, making this the first example of a “beneficial” microbe entering vertebrate cells. Another closely related species of salamander, Ambystoma gracile, also harbors beneficial Oophila algae in its egg capsules. However, our sampling within the A. gracile range consistently shows this to be a strict ectosymbiotic interaction—with no sign of tissue or presumably cellular entry. In this study we swapped cultured algae derived from intracapsular fluid of different salamander hosts to test the fidelity of tissue entry in these symbioses. Both A. maculatum and A. gracile embryos were raised in cultures with their own algae or algae cultured from the other host. Under these in vitro culture conditions A. maculatum algae will enter embryonic A. maculatum tissues. Additionally, although at a much lower frequency, A. gracile derived algae will also enter A. maculatum host tissues. However, neither Oophila strain enters A. gracile hosts in these co-culture conditions. These data reveal a potential host-symbiont fidelity that allows the unique endosymbiosis to occur in A. maculatum, but not in A. gracile. However, preliminary trials in our study found that persistent endogenous A. maculatum algae, as opposed to the cultured algae used in subsequent trials, enters host tissues at a higher frequency. An analysis of previously published Oophila transcriptomes revealed dramatic differences in gene expression between cultured and intracapsular Oophila. These include a suite of genes in protein and cell wall synthesis, photosynthesis, central carbon metabolism suggesting the intracapsular algae are assimilating ammonia for nitrogen metabolism and may be undergoing a life-cycle transition. Further refinements of these co-culture conditions could help determine physiological differences between cultured and endogenous algae, as well as rate-limiting cues provided for the alga by the salamander

    The dynamics of Abell 2634

    Get PDF
    We have amassed a large sample of velocity data for the cluster of galaxies Abell 2634 which contains the wide-angle tail (WAT) radio source 3C 465. Robust indicators of location and scale and their confidence intervals are used to determine if the cD galaxy, containing the WAT, has a significant peculiar motion. We find a cD peculiar radial velocity of 219 plus or minus 98 km s(exp -1). Further dynamical analyses, including substructure and normality tests, suggest that A 2634 is an unrelaxed cluster whose radio source structure may be bent by the turbulent gas of a recent cluster-subcluster merger

    Double Resonance Nanolaser based on Coupled Slit-hole Resonator Structures

    Full text link
    This work investigates a kind of metallic magnetic cavity based on slit-hole resonators (SHRs). Two orthogonal hybrid magnetic resonance modes of the cavity with a large spatial overlap are predesigned at the wavelengths of 980 nm and 1550 nm. The Yb-Er co-doped material serving as a gain medium is set in the cavity; this enables the resonator to have high optical activity. The numerical result shows that the strong lasing at 1550 nm may be achieved when the cavity array is pumped at 980 nm. This double resonance nanolaser array has potential applications in future optical devices and quantum information techniques.Comment: 11 pages, 3 figures, http://www.dsl.nju.edu/mp

    Managing the trade-off implications of global supply

    Get PDF
    The cost versus response trade-off is a growing logistics issue due to many markets being increasingly characterized by demand uncertainty and shorter product life cycles. This is exacerbated further with supply increasingly moving to low cost global sources. However, the poor response implications of global supply are often not addressed or even acknowledged when undertaking such decisions. Consequently, various practical approaches to minimising, postponing or otherwise managing the impact of the demand uncertainty are often only adopted retrospectively. Even though such generic solutions are documented through case examples we lack effective tools and concepts to support the proactive identification and resolution of such trade-offs. This paper reports on case-based theory building research, involving three cases from the UK and USA used in developing a conceptual model with associated tools, in support of such a process

    Redshifts and Optical Properties for a Statistically Complete Sample of Poor Galaxy Clusters

    Get PDF
    From the poor cluster catalog of White et al. (1996), we define a sample of 71 optically-selected poor galaxy clusters. The surface-density enhance- ment we require for our clusters falls between that of the loose associations of Turner and Gott (1976) and the Hickson compact groups (Hickson, 1982). We review the selection biases and determine the statistical comleteness of the sample. For this sample, we report new velocity measurements made with the ARC 3.5-m Dual-Imaging spectrograph and the 2.3-m Steward Observatory MX fiber spectrograph. Combining our own measurements with those from the literature, we examine the velocity distributions, velocity dispersions, and 1-d velocity substructure for our poor cluster sample, and compare our results to other poor cluster samples. We find that approximately half of the sample may have significant 1-d velocity substructure. The optical morphology, large-scale environment, and velocity field of many of these clusters is indicative of young, dynamically evolving systems. In future papers, we will use this sample to derive the poor cluster X-ray luminosity function and gas mass function (see astro-ph/9606120), and will examine the optical/X-ray properties of the clusters in more detail.Comment: 15 pages LaTeX, 3 tables, 5 postscript figures. To appear in the August 1996 Astronomical Journa

    Sample Preparation Techniques for Grain Boundary Characterization of Annealed TRISO-Coated Particles

    Get PDF
    Crystallographic information about layers of silicon carbide (SiC) deposited by chemical vapor deposition is essential to understanding layer performance, especially when the the layers are in nonplanar geometries (e.g., spherical). Electron backscatter diffraction (EBSD) was used to analyze spherical SiC layers using a different sampling approach that applied focused ion beam (FIB) milling to avoid the negative impacts of traditional sample polishing and address the need for very small samples of irradiated materials for analysis. The mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strain and result in the unequal removal of SiC and the surrounding layers of different materials due to the hardness differences among these materials. The nature of layer interfaces is thought to play a key role in the performance of SiC; therefore, the analysis of representative samples at these interfacial areas is crucial. In the work reported herein, a FIB was employed in a novel manner to prepare a more representative sample for EBSD analysis from tristructural-isotropic layers that are free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron-irradiated microscopic samples (such as those analyzed in this work) has been simplified using pretilted mounting stages. The results showed that while the average grain sizes of samples may be similar, the grain boundary characteristics can differ significantly. Furthermore, low-angle grain boundaries comprised 25% of all boundaries in the FIB-prepared sample compared to only 1% to 2% in the polished sample from the same particle. This study demonstrated that the characterization results from FIB-prepared samples provide more repeatable results due to the elimination of the effects of sample preparation
    • …
    corecore