23 research outputs found

    The role of the maternal immune system in the regulation of human birth weight

    Get PDF
    This is the accepted manuscript version. It will be embargoed until 12 months after publication by RSC. The final version is available from RCS at http://rstb.royalsocietypublishing.org/content/370/1663/20140071.longHuman birth weight is subject to stabilizing selection. Large babies are at risk of obstetric complications such as obstructed labour, which endangers both mother and child. Small babies are also at risk with reduced survival. Fetal growth requires remodeling of maternal spiral arteries to provide an adequate maternal blood supply to the placenta. This arterial transformation is achieved by placental trophoblast cells, which invade into the uterine wall. Under invasion is associated with fetal growth restriction; but if invasion is excessive large babies can result. A growing body of evidence suggests that this process is controlled by interactions between KIR receptors expressed on maternal uterine NK cells (uNK) and their corresponding HLA-C ligands on invading trophoblast. Mothers with the KIR AA genotype and a fetus with a paternal HLA-C2 allele tend to have small babies, because this combination inhibits cytokine secretion by uNK. Mothers with the activating KIR2DS1 gene and an HLA-C2 fetus are more likely to have large babies. When KIR2DS1 binds to HLA-C2 this increases secretion of cytokines that enhance trophoblast invasion. We conclude that specific combinations of the highly polymorphic gene systems, KIR and HLAC, contribute to successful reproduction by maintaining birth weight between two extremes.This work was supported by funding from the Wellcome Trust [090108/Z/09/Z], [085992/Z/08/Z] and the British Heart Foundation [PG/09/077/27964]. This work was also supported by a Frederick National Laboratory for Cancer Research Contract [HHSN261200800001E] and by the Intramural Research Program of National Institutes of Health, Frederick National Laboratory, Center for Cancer Research. The authors also thank the Centre for Trophoblast Research, Cambridge for generous support

    Combinations of Maternal KIR and Fetal HLA-C Genes Influence the Risk of Preeclampsia and Reproductive Success

    Get PDF
    Preeclampsia is a serious complication of pregnancy in which the fetus receives an inadequate supply of blood due to failure of trophoblast invasion. There is evidence that the condition has an immunological basis. The only known polymorphic histocompatibility antigens on the fetal trophoblast are HLA-C molecules. We tested the idea that recognition of these molecules by killer immunoglobulin receptors (KIRs) on maternal decidual NK cells is a key factor in the development of preeclampsia. Striking differences were observed when these polymorphic ligand: receptor pairs were considered in combination. Mothers lacking most or all activating KIR (AA genotype) when the fetus possessed HLA-C belonging to the HLA-C2 group were at a greatly increased risk of preeclampsia. This was true even if the mother herself also had HLA-C2, indicating that neither nonself nor missing-self discrimination was operative. Thus, this interaction between maternal KIR and trophoblast appears not to have an immune function, but instead plays a physiological role related to placental development. Different human populations have a reciprocal relationship between AA frequency and HLA-C2 frequency, suggesting selection against this combination. In light of our findings, reproductive success may have been a factor in the evolution and maintenance of human HLA-C and KIR polymorphisms

    Tissue-Specific Education of Decidual NK Cells.

    Get PDF
    During human pregnancy, fetal trophoblast cells invade the decidua and remodel maternal spiral arteries to establish adequate nutrition during gestation. Tissue NK cells in the decidua (dNK) express inhibitory NK receptors (iNKR) that recognize allogeneic HLA-C molecules on trophoblast. Where this results in excessive dNK inhibition, the risk of pre-eclampsia or growth restriction is increased. However, the role of maternal, self-HLA-C in regulating dNK responsiveness is unknown. We investigated how the expression and function of five iNKR in dNK is influenced by maternal HLA-C. In dNK isolated from women who have HLA-C alleles that carry a C2 epitope, there is decreased expression frequency of the cognate receptor, KIR2DL1. In contrast, women with HLA-C alleles bearing a C1 epitope have increased frequency of the corresponding receptor, KIR2DL3. Maternal HLA-C had no significant effect on KIR2DL1 or KIR2DL3 in peripheral blood NK cells (pbNK). This resulted in a very different KIR repertoire for dNK capable of binding C1 or C2 epitopes compared with pbNK. We also show that, although maternal KIR2DL1 binding to C2 epitope educates dNK cells to acquire functional competence, the effects of other iNKR on dNK responsiveness are quite different from those in pbNK. This provides a basis for understanding how dNK responses to allogeneic trophoblast affect the outcome of pregnancy. Our findings suggest that the mechanisms that determine the repertoire of iNKR and the effect of self-MHC on NK education may differ in tissue NK cells compared with pbNK.This work was supported by Wellcome Trust Grants 090108/Z/09/Z and 085992/Z/08/Z, as well as by British Heart Foundation Grant PG/09/077/27964. P.R.K. was the recipient of a Wellcome Trust Ph.D. studentship.This is the final version of the article. It first appeared from the American Association of Immunologists via http://dx.doi.org/10.4049/​jimmunol.150122

    Killer cell immunoglobulin-like receptor (KIR) genes and their HLA-C ligands in a Ugandan population.

    Get PDF
    Killer cell immunoglobulin-like receptor (KIR) genes are expressed by natural killer cells and encoded by a family of genes exhibiting considerable haplotypic and allelic variation. HLA-C molecules, the dominant ligands for KIR, are present in all individuals and are discriminated by two KIR epitopes, C1 and C2. We studied the frequencies of KIR genes and HLA-C1 and C2 groups in a large cohort (n = 492) from Kampala, Uganda, East Africa and compared our findings with published data from other populations in sub-Saharan Africa (SSA) and several European populations. We find considerably more KIR diversity and weaker linkage disequilibrium in SSA compared to the European populations and describe several novel KIR genotypes. C1 and C2 frequencies were similar to other SSA populations with a higher frequency of the C2 epitope (54.9 %) compared to Europe (average 39.7 %). Analysis of this large cohort from Uganda in the context of other African populations reveals variations in KIR and HLA-C1 and C2 that are consistent with migrations within Africa and potential selection pressures on these genes. Our results will help understand how KIR/HLA-C interactions contribute to resistance to pathogens and reproductive success

    A KIR B centromeric region present in Africans but not Europeans protects pregnant women from pre-eclampsia.

    Get PDF
    In sub-Saharan Africans, maternal mortality is unacceptably high, with >400 deaths per 100,000 births compared with <10 deaths per 100,000 births in Europeans. One-third of the deaths are caused by pre-eclampsia, a syndrome arising from defective placentation. Controlling placentation are maternal natural killer (NK) cells that use killer-cell immunoglobulin-like receptor (KIR) to recognize the fetal HLA-C molecules on invading trophoblast. We analyzed genetic polymorphisms of maternal KIR and fetal HLA-C in 484 normal and 254 pre-eclamptic pregnancies at Mulago Hospital, Kampala, Uganda. The combination of maternal KIR AA genotypes and fetal HLA-C alleles encoding the C2 epitope associates with pre-eclampsia [P = 0.0318, odds ratio (OR) = 1.49]. The KIR genes associated with protection are located in centromeric KIR B regions that are unique to sub-Saharan African populations and contain the KIR2DS5 and KIR2DL1 genes (P = 0.0095, OR = 0.59). By contrast, telomeric KIR B genes protect Europeans against pre-eclampsia. Thus, different KIR B regions protect sub-Saharan Africans and Europeans from pre-eclampsia, whereas in both populations, the KIR AA genotype is a risk factor for the syndrome. These results emphasize the importance of undertaking genetic studies of pregnancy disorders in African populations with the potential to provide biological insights not available from studies restricted to European populations.This work was supported by the Wellcome Trust (090108/Z/09/Z, 085992/Z/08/Z, 089821/Z/09/Z), the British Heart Foundation (PG/ 09/077/27964), the Centre for Trophoblast Research at the University of Cambridge, a Wellcome Trust Uganda PhD Fellowship in Infection and Immunity held by Annettee Nakimuli, funded by a Wellcome Trust Strategic Award (084344), the US National Institutes of Health (AI017892), and the UK Medical Research Council (G0901682).This is the accepted manuscript of a paper published in PNAS (A Nakimuli, O Chazara, SE Hiby, L Farrell, S Tukwasibwe, J Jayaraman, JA Traherne, J Trowsdale, F Colucci, Emma Lougee, RW Vaughan, AM Elliott, J Byamugishaa, P Kaleebu, F Mirembe, N Nemat-Gorgani, P Parham, PJ Norman, A Moffett, PNAS 2015, 112, 845-850

    Variants in the fetal genome near FLT1 are associated with risk of preeclampsia.

    Get PDF
    Preeclampsia, which affects approximately 5% of pregnancies, is a leading cause of maternal and perinatal death. The causes of preeclampsia remain unclear, but there is evidence for inherited susceptibility. Genome-wide association studies (GWAS) have not identified maternal sequence variants of genome-wide significance that replicate in independent data sets. We report the first GWAS of offspring from preeclamptic pregnancies and discovery of the first genome-wide significant susceptibility locus (rs4769613; P = 5.4 × 10-11) in 4,380 cases and 310,238 controls. This locus is near the FLT1 gene encoding Fms-like tyrosine kinase 1, providing biological support, as a placental isoform of this protein (sFlt-1) is implicated in the pathology of preeclampsia. The association was strongest in offspring from pregnancies in which preeclampsia developed during late gestation and offspring birth weights exceeded the tenth centile. An additional nearby variant, rs12050029, associated with preeclampsia independently of rs4769613. The newly discovered locus may enhance understanding of the pathophysiology of preeclampsia and its subtypes

    The role of the maternal immune system in the regulation of human birthweight

    No full text
    This is the accepted manuscript version. It will be embargoed until 12 months after publication by RSC. The final version is available from RCS at http://rstb.royalsocietypublishing.org/content/370/1663/20140071.longHuman birth weight is subject to stabilizing selection. Large babies are at\ud risk of obstetric complications such as obstructed labour, which endangers\ud both mother and child. Small babies are also at risk with reduced survival.\ud Fetal growth requires remodeling of maternal spiral arteries to provide an\ud adequate maternal blood supply to the placenta. This arterial\ud transformation is achieved by placental trophoblast cells, which invade into\ud the uterine wall. Under invasion is associated with fetal growth restriction;\ud but if invasion is excessive large babies can result. A growing body of\ud evidence suggests that this process is controlled by interactions between KIR\ud receptors expressed on maternal uterine NK cells (uNK) and their\ud corresponding HLA-C ligands on invading trophoblast. Mothers with the KIR\ud AA genotype and a fetus with a paternal HLA-C2 allele tend to have small\ud babies, because this combination inhibits cytokine secretion by uNK.\ud Mothers with the activating KIR2DS1 gene and an HLA-C2 fetus are more\ud likely to have large babies. When KIR2DS1 binds to HLA-C2 this increases\ud secretion of cytokines that enhance trophoblast invasion. We conclude that\ud specific combinations of the highly polymorphic gene systems, KIR and HLAC,\ud contribute to successful reproduction by maintaining birth weight\ud between two extremes.This work was supported by\ud funding from the Wellcome Trust [090108/Z/09/Z], [085992/Z/08/Z] and\ud the British Heart Foundation [PG/09/077/27964]. This work was also\ud supported by a Frederick National Laboratory for Cancer Research Contract\ud [HHSN261200800001E] and by the Intramural Research Program of National\ud Institutes of Health, Frederick National Laboratory, Center for Cancer\ud Research. The authors also thank the Centre for Trophoblast Research,\ud Cambridge for generous support

    Distribution of killer cell immunoglobulin-like receptors (KIR) and their HLA-C ligands in two Iranian populations

    Get PDF
    Killer cell immunoglobulin-like receptors (KIR) gene frequencies vary between populations and contribute to functional variation in immune responses to viruses, autoimmunity and reproductive success. This study describes the frequency distribution of 12 variable KIR genes and their HLA-C ligands in two Iranian populations who have lived for many generations in different environments: the Azerbaijanis at high altitude and the Jonobi people at sea level. The results are compared with those published for other human populations and a large group of English Caucasians. Differences were seen in KIR and HLA-C group frequencies, in linkage disequilibrium and inhibitory/activating KIR ratios between the groups. Similarities with geographically close populations in the frequencies of the KIR A and B haplotypes and KIR AA genotype reflected their common ancestry. The extreme variability of the KIR gene family and their HLA-C ligands is highlighted and their importance in defining differences between geographically and culturally isolated communities subject to different environmental pressures who come from the same ethnic grouping
    corecore