917 research outputs found

    Ein Prognosemodell für die Schullaufbahnberatung

    Get PDF

    P303 INTRA-ARTICULAR HYALURONIC ACID COMPARED WITH CORTICOID INJECTIONS FOR THE TREATMENT OF RHIZARTHROSIS

    Get PDF

    RNAi Trigger Delivery into Anopheles gambiae Pupae

    Get PDF
    Citation: Regna, K., Harrison, R. M., Heyse, S. A., Chiles, T. C., Michel, K., & Muskavitch, M. A. T. (2016). RNAi Trigger Delivery into Anopheles gambiae Pupae. Jove-Journal of Visualized Experiments(109), 9. doi:10.3791/53738RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel

    Fostering European Collaborations: EUFRAT and work done at the accelerator facilities of JRC-IRMM

    Get PDF
    The European Commission via the General Directorate RTD in its different Framework Programs supported collaborations of member state institutions dealing with nuclear data. The projects EFNUDAT, ERINDA, CHANDA and EUFRAT all have in common Transnational Access Activities (TAA) to partner institutions. Within the past 10 years the collaborations have grown and in CHANDA now 35 partners are involved of which 16 offer TAA to their facilities. Since June 2014 JRC-IRMM, one of the driving forces behind the TAA, launched its own TAA project EUFRAT to foster collaborations with member states institutions. The calls for proposals are open ended with a deadline twice a year. A Project Advisory Committee discusses the proposals and decides on about approval. Financial support is given to approved proposals for two scientists. So far two calls have been evaluated with a request for access totalling more than 5000 h. Examples of proposals at the accelerator facilities at the JRC-IRMM are presented showing the multitude of possibilities using the nuclear facilities at the JRC-IRMM

    Classic McEliece Implementation with Low Memory Footprint

    Get PDF
    The Classic McEliece cryptosystem is one of the most trusted quantum-resistant cryptographic schemes. Deploying it in practical applications, however, is challenging due to the size of its public key. In this work, we bridge this gap. We present an implementation of Classic McEliece on an ARM Cortex-M4 processor, optimized to overcome memory constraints. To this end, we present an algorithm to retrieve the public key ad-hoc. This reduces memory and storage requirements and enables the generation of larger key pairs on the device. To further improve the implementation, we perform the public key operation by streaming the key to avoid storing it as a whole. This additionally reduces the risk of denial of service attacks. Finally, we use these results to implement and run TLS on the embedded device

    Effect of the unpolarized spin state in spin-correlation measurement of two protons produced in the 12C(d,2He) reaction

    Get PDF
    In this note we discuss the effect of the unpolarized state in the spin-correlation measurement of the 1S0^1S_0 two-proton state produced in 12C(d,2He) reaction at the KVI, Groningen. We show that in the presence of the unpolarized state the maximal violation of the CHSH-Bell inequality is lower than the classical limit if the purity of the state is less than 70% \sim \verb+70%+. In particular, for the KVI experiment the violation of the CHSH-Bell inequality should be corrected by a factor 10%\sim\verb+10%+ from the pure 1S0^1S_0 state.Comment: 6 pages, to appear in J. Phys.

    Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos

    Full text link
    Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given

    On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders

    Get PDF
    International audienceQuasi-cyclic moderate density parity check codes allow the design of McEliece-like public-key encryption schemes with compact keys and a security that provably reduces to hard decoding problems for quasi-cyclic codes.In particular, QC-MDPC are among the most promising code-based key encapsulation mechanisms (KEM) that are proposed to the NIST call for standardization of quantum safe cryptography (two proposals, BIKE and QC-MDPC KEM).The first generation of decoding algorithms suffers from a small, but not negligible, decoding failure rate (DFR in the order of 10⁻⁷ to 10⁻¹⁰). This allows a key recovery attack presented by Guo, Johansson, and Stankovski (GJS attack) at Asiacrypt 2016 which exploits a small correlation between the faulty message patterns and the secret key of the scheme, and limits the usage of the scheme to KEMs using ephemeral public keys. It does not impact the interactive establishment of secure communications (e.g. TLS), but the use of static public keys for asynchronous applications (e.g. email) is rendered dangerous.Understanding and improving the decoding of QC-MDPC is thus of interest for cryptographic applications. In particular, finding parameters for which the failure rate is provably negligible (typically as low as 2⁻⁶⁴ or 2⁻¹²⁸) would allow static keys and increase the applicability of the mentioned cryptosystems.We study here a simple variant of bit-flipping decoding, which we call step-by-step decoding. It has a higher DFR but its evolution can be modeled by a Markov chain, within the theoretical framework of Julia Chaulet's PhD thesis. We study two other, more efficient, decoders. One is the textbook algorithm. The other is (close to) the BIKE decoder. For all those algorithms we provide simulation results, and, assuming an evolution similar to the step-by-step decoder, we extrapolate the value of the DFR as a function of the block length. This will give an indication of how much the code parameters must be increased to ensure resistance to the GJS attack
    corecore