7,029 research outputs found
A Bilevel Approach to Optimal Price-Setting of Time-and-Level-of-Use Tariffs
Time-and-Level-of-Use (TLOU) is a recently proposed pricing policy for
energy, extending Time-of-Use with the addition of a capacity that users can
book for a given time frame, reducing their expected energy cost if they
respect this self-determined capacity limit. We introduce a variant of the TLOU
defined in the literature, aligned with the supplier interest to prevent
unplanned over-consumption. The optimal price-setting problem of TLOU is
defined as a bilevel, bi-objective problem anticipating user choices in the
supplier decision. An efficient resolution scheme is developed, based on the
specific discrete structure of the lower-level user problem. Computational
experiments using consumption distributions estimated from historical data
illustrate the effectiveness of the proposed framework
The Dynamical Behaviour of Test Particles in a Quasi-Spherical Spacetime and the Physical Meaning of Superenergy
We calculate the instantaneous proper radial acceleration of test particles
(as measured by a locally defined Lorentzian observer) in a Weyl spacetime,
close to the horizon. As expected from the Israel theorem, there appear some
bifurcations with respect to the spherically symmetric case (Schwarzschild),
which are explained in terms of the behaviour of the superenergy, bringing out
the physical relevance of this quantity in the study of general relativistic
systems.Comment: 14 pages, Latex. 4 figures. New references added. Typos corrected. To
appear in Int. J. Theor. Phy
Atmospheric pressure gas chromatography-time-of-flight-mass spectrometry (APGC-ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE)
This work presents the development, optimization and validation of a multi-residue method for the simultaneous determination of 102 contaminants, including fragrances, UV filters, repellents, endocrine disruptors, biocides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and several types of pesticides in aqueous matrices. Water samples were processed using stir bar sorptive extraction (SBSE) after the optimization of several parameters: agitation time, ionic strength, presence of organic modifiers, pH, and volume of the derivatizing agent. Target compounds were extracted from the bars by liquid desorption (LD). Separation, identification and quantification of analytes were carried out by gas chromatography (GC) coupled to time-of-flight (ToF-MS) mass spectrometry. A new ionization source, atmospheric pressure gas chromatography (APGC), was tested. The optimized protocol showed acceptable recovery percentages (50–100%) and limits of detection below 1 ng L−1 for most of the compounds. Occurrence of 21 out of 102 analytes was confirmed in several environmental aquatic matrices, including seawater, sewage effluent, river water and groundwater. Non-target compounds such as organophosphorus flame retardants were also identified in real samples by accurate mass measurement of their molecular ions using GC-APGC–ToF-MS. To the best of our knowledge, this is the first time that this technique has been applied for the analysis of contaminants in aquatic systems. By employing lower energy than the more widely used electron impact ionization (EI), AGPC provides significant advantages over EI for those substances very susceptible to high fragmentation (e.g., fragrances, pyrethroids)
- …