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Optimal Collaborative Demand-Response Planner for Smart Residential Buildings

Juan A. Gomez-Herreraa,∗, Miguel F. Anjosa

aGERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montreal, C.P. 6079, Succ. Centre-Ville, Montreal,
QC, Canada H3C 3A7.

Abstract

This work presents a collaborative scheme for the end-users in a smart building with multiple housing units. This
approach determines a day-ahead operational plan that provides demand-response services by taking into account the
amount of energy consumed per household, the use of shared storage and solar panels, and the amount of shifted load.
We use a biobjective optimization model to trade off total user satisfaction versus total cost of energy consumption. The
optimization works in combination with a price structure based on time and level of use that encourages load shifting
and benefits the participants. Computational experiments and an extensive sensitivity analysis validate the performance
of the proposed approach and help to clarify its strengths, its limits, and the requirements for ensuring the desired
outcome.

Keywords: Smart Buildings, Demand-Response, Residential Load, Biobjective Optimization, Compromise
Programming.

1. Notation

Sets:
i ∈ I : Energy levels
j ∈ J : Users
t ∈ T : Time frames

Parameters:5

Djt : Energy demand of user j in time frame t
(kWh)

Kit : Price per energy unit bought from the grid
in level i in time frame t (g/kWh)

CL : Available capacity in the lower level (kW)
CH

j : Available capacity in the higher level for user
j (kW)

B : Cost of charging the battery per energy unit
(g/kWh)

Smax : Capacity of the battery (kWh)
Γ : Battery efficiency
Z : Number of cycles allowed in the battery
Pt : Incentive paid by the grid per energy unit

in a demand-response call in time frame t
(g/kWh)

DRt : Energy consumption reduction requested by
the grid in time frame t (KWh)

Gmax
t : Available energy from solar panels in time

frame t (g/kWh)
F : Cost per energy unit obtained from the solar

panels (g/kWh)

∗Corresponding author
Email address: juan.gomez@polymtl.ca (Juan A.

Gomez-Herrera )

Yj : Max accumulated shifted demand over the
horizon accepted by user j (kWh)

Ŷj : Max unmet demand at the end of the horizon
for user j (kWh)

Ψmax
sol : Max percentage of total demand satisfied by

solar panels
Ψmin

sol : Min percentage of total demand satisfied by
solar panels

Ψmax
bat : Max percentage of total demand satisfied by

the battery
Ψmin

bat : Min percentage of total demand satisfied by
the battery

Variables:
xijt : Energy bought from the grid in level i by

user j in time frame t
yjt : Accumulated unmet demand at the end of

period t for user j
socjt : Individual state of charge for user j at the

end of time frame t
s+jt : Energy charged in the battery in time frame

t by user j
s−jt : Energy discharged from the battery in time

frame t by user j
rjt : Amount of demand-response service pro-

vided by user j in time frame t
gjt : Consumed energy from solar panels for user

j in time frame t
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αt :

{ 1 Battery charges during time
frame t

0 Battery discharges during time
frame t

zt :

{ 1 Battery changes from charging to
discharging or vice versa

0 Otherwise

φt :

{ 1 The building agrees to provide
demand response in time frame
t

0 Otherwise

2. Introduction

The implementation of smart buildings introduces two
major challenges for consumer planning. First, consumers15

desire to meet their energy requirements keeping a high
level of satisfaction at a minimum cost. These objectives
can rarely be attained simultaneously. Second, the en-
ergy supplier (system operator, utility, etc.) is required to
meet user demand while ensuring system stability. It is20

often expensive to satisfy these requirements during peak
consumption times.

The end-users play an important role in the mission
of balancing generation and demand. This participation
is driven mainly by a) demand response (DR), defined as25

“changes in electric usage by demand-side resources from
their normal consumption patterns in response to changes
in the price of electricity over time, or to incentive pay-
ments designed to induce lower electricity use at times of
high wholesale market prices or when system reliability is30

jeopardized ” [1], and b) smart grids, which support com-
munication and decision-making by both users and gener-
ators. These technologies also allow the integration of new
resources, such as distributed generators, solar panels, and
storage units, that increase the complexity of the system35

but may offer benefits to all the participants.
Traditionally DR pricing programs are offered to res-

idential and commercial customers, while DR incentive-
based programs are meant for large commercial and indus-
trial consumers capable of provide significant load reduc-40

tion, often in exchange for a financial incentive [2]. Nev-
ertheless the residential and commercial sectors represent
a major part of the total consumer demand [3], and the
aggregated DR potential in these sectors could play an
important role in the current and future operation of the45

grid. However it is difficult to exploit this potential due
to the large number of consumers. An entity capable of
coordinating the actions of multiple end-users can aggre-
gate enough DR potential, not only to participate through
pricing programs but also to provide DR services through50

incentive-based programs. The approach presented in this
article aims to support and facilitate this coordination pro-
cess.

Previous works have considered different aspects when
treating this task. Typically they include single or multi-55

ple users, storage and/or distributed generation and they

focus on the planning and control of the system. The ap-
proach in [4] schedules generators, storage devices, and
controllable loads, and compensates for the uncertainties
in the dynamics of the system through a model predictive60

control strategy.
A similar idea is explored in [5], including models for

combined heat and power generation, in the presence of
thermal and electrical loads and storage units. An eco-
nomic comparison of a rolling-horizon approach and the65

standard unit commitment for microgrids is presented in
[6].

The authors in [7] propose a robust optimal control to
manage the load prediction uncertainty for cooling devices
in a DR context. The algorithm presented in [8] schedules70

loads for large populations. It aggregates different types
of appliances and distributed energy systems.

The mixed integer programs in [9] and [10] minimize
the use of conventional generation resources in order to
encourage the use of the batteries of electric vehicles and75

the available renewable resources, ensuring a high level of
self-consumption. The approach presented in [11] assesses
several configurations of a grid-connected microgrid, con-
sidering a two-way flow of power and its impact on the
grid. An autonomous microgrid optimal operation ap-80

proach is presented in [12], considering the generation and
consumption sides and the balance between the two in a
real-time scenario. A function based on declining block
rates achieves a balance between user comfort and elec-
tricity cost in [13]. It presents a microeconomic analysis85

of this function, and the method is used for bidirectional
energy trading.

All the approaches mentioned previously minimize the
total operational cost. Cost is a popular and important
performance measure, but even though it conveys impor-90

tant information, it neglects the perspective of user’s sat-
isfaction which is key in a DR context.

Other works take into account elements such as user
comfort and preferences via constraints and/or costs that
approximate the level of satisfaction. This way of dealing95

with conflicting objectives is one among several options in
multiobjective optimization [14]. When objectives conflict,
such as cost and comfort in our case, there is usually no
solution that optimizes them simultaneously. To improve
one of the objectives we may have to worsen one or more100

of the others. When this is the case, the solution is said
to be Pareto efficient, Pareto optimal, or nondominated.

A comprehensive review of methods to find Pareto effi-
cient solutions can be found in [15]. It presents approaches
that include the user preferences in the decision-making105

and that represent and approximate the Pareto front (the
set of Pareto efficient solutions).

Multiobjective optimization has been explored in the
smart grid context. Particle swarm optimization and weighted
aggregation are used in [16] to approximate the Pareto110

front for energy cost and environment comfort. The Pareto
front is approximated using the ε-constraint method in
[17], balancing the total cost and the energy obtained from
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distributed generators in isolated sites, and in [18] and [19]
minimizing both pollutant emission and operating cost.115

Lexicographic goal programming is used in [20] to min-
imize the operational costs, the emissions produced, and
the asset deterioration resulting from exposure to excess
temperatures.

Finally, the weighted-sum approach is used to balance120

the minimization of load curtailment, operating cost, and
pollutant emission in [21], and energy costs and thermal
comfort in [22].

The same approach is used in [23] to trade off the oper-
ational cost of two buildings that share combined cooling125

and heating systems, battery and thermal storage. In this
case the model ensures demand satisfaction at a minimum
cost for the building cluster but does not consider other
elements such as DR incentives, load shifting or renewable
energy integration.130

Although there is a growing interest in the trade-offs
between conflicting objectives such as cost and user satis-
faction, there is still the need to integrate these features in
a DR context. Greater DR participation can be achieved
through the coordination and aggregation of multiple con-135

sumers who will prioritize not only cost but also demand
satisfaction.

This paper presents, to the best of our knowledge, the
first framework for residential DR that includes two of the
most common types of DR programs, namely incentive-140

based programs and pricing programs, while considering
the user satisfaction via biobjective optimization.

Our approach determines an operational plan for a
smart building with multiple housing units. The frame-
work considers DR programs and balances cost and shifted145

load for the end-users. We use biobjective optimization to
find efficient trade-offs between the two conflicting objec-
tives without estimating the Pareto front. These are the
main contributions of this article:

• We model the individual shifting capabilities of the150

user as a resource whose cost is handled via biojec-
tive optimization. In this scenario the consumers
may actively participate, choosing when to shift load
and to provide DR.

• We propose and analyse a novel pricing structure155

that encourages a more homogeneous consumption
during the planning horizon.

• We propose a tool to optimally coordinate shared
resources such as batteries and solar panels, keep-
ing track of the individual usage and ensuring a fair160

allocation.

• We present a sensitivity analysis that provides in-
sight into the selection and definition of parameters
and their effect in the final result.

This paper is structured as follows. The proposed ap-165

proach is described in Section 3, the computational exper-

iments and sensitivity analysis are presented in Section 4,
and the conclusion is given in Section 5.

3. Proposed Optimization Approach

Figure 1 shows the general operation of the smart build-170

ing. The planning module is composed of a centralized
energy management system with two-way communication
with the households, the resources and the grid. This mod-
ule receives day-ahead information from each household in
the form of an energy demand forecast Djt and shifting175

preferences Yj and Ŷj . Each household can determine and
transmit this information using a smart meter and its local
energy management system.

It is important to highlight that the battery and a set
of solar panels are managed by the planning module, and180

they are resources that are shared among all the housing
units. Therefore, the module receives the current state
of charge socjt from the battery, and the expected solar
generation Gmax

t from the solar panels. In addition, in the
context of an incentive-based DR program, the planning185

module receives the scheduled DR requests from the grid.
Once all the information has been gathered, the plan-

ning module solves a biobjective optimization problem for
the building, finding an optimal trade-off between the to-
tal cost and the shifted load. The shifted load represents190

the level of dissatisfaction perceived by the household, de-
pending on its submitted preferences for when and by how
much consumption can be delayed or reduced.

Figure 1: Smart building operation.

After solving the optimization problem, we obtain in-
dividual plans that specify, for each user and time frame,195

the amount of energy to be drawn from the grid xijt, the
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allocation of the energy obtained from the solar panels gjt,
the use of the battery s+jt and s−jt, and the shifted load yjt.

We note that the technology required to implement
the proposed scheme is commonly available in the mod-200

ern context of the Internet of Things. A variety of smart
meters, smart appliances, and smart thermostats enable
two-way communication between the planning module and
the households, the resources, and the grid, as depicted in
Figure 1. A comprehensive review of the requirements for205

a successful implementation of this type of system is pre-
sented in [24].

One of the main features of this approach is that it finds
a balance between total cost and shifted load while pro-
viding DR services. We include two of the most common210

types of DR: incentive-based programs and pricing pro-
grams. For the incentive-based program the optimization
model decides whether or not the building answers a DR
call. In the case of a positive answer, the building commits
to lowering consumption by using the battery or allocat-215

ing capacity reductions to some customers, who shift load
accordingly. Finally, it reports to each household its share
of the DR provided and the benefit obtained. The pricing
program encourages peak reduction through the combina-
tion of different prices.220

We include a time and level of use (TLOU) pricing
structure in which the price varies time-wise and level-wise
[25]. This is an extension of the time of use (TOU) pricing
that is widely used. The TLOU pricing is represented by
the parameter Kit. In each time frame t, each user can225

consume up to capacity i, paying price Kit. Beyond this
threshold the user will pay the next price, Ki+1,t. We
consider two pricing levels for each time frame, a lower
price and a higher price, but in general several levels can
be used. This pricing structure works in combination with230

the DR requests from the grid and the willingness to shift
load. Its effect is strengthened via the use of the storage
unit and solar panels. The costs associated with these two
resources represent the amortization of the corresponding
investments.235

So far we have considered the main features and advan-
tages of the proposed approach. We identify some limita-
tions as well. As mentioned before, the approach considers
the end-user perspective (cost and demand satisfaction),
which means that it is not a method to directly control the240

peaks of consumption. Any peak reduction will come as
a consequence of users’ decisions (motivated by a combi-
nation of cost and satisfaction) and not from direct inter-
vention by the utility. This aspect will be explored in Sec-
tion 4.2 in which the proper selection of the cost structure245

by the utility facilitates the peak reduction. Additionally,
the optimization model only considers that the electricity
flows from the grid towards the users. In other words, the
users can adjust their demand, but not sell back to the
grid any energy stored in the battery or produced by the250

solar panels.

3.1. Similarity to the Lot-Sizing Problem

In a general way, determining the consumption plan
under these conditions resembles a classical manufactur-
ing problem: the lot sizing (LS) problem. LS determines255

the lot sizes that minimize the operational cost of a pro-
duction process over a multiperiod horizon [26]. We must
determine the amount of energy to consume, store and
shift in each time frame.

The LS structure allows us to handle the inventory260

coordination requirement derived from multiple consumers
(similar to multiple products). Although the battery is
shared among all the users, each user has an individual
state of charge.

Additionally, each user has maximum consumptions265

CL and CH
j and is willing to shift load according to the

preference parameters Yj and Ŷj . This is similar to capac-
itated LS with backlogging [26], where the objective is to
minimize the sum of the production, storage, and backlog-
ging costs. The latter helps to represent the load shifting270

and therefore the demand satisfaction. The variable yjt
accounts for both, the amount of unmet demand and the
time that demand has remained unmet. We assess the
cost of shifting load by solving a biobjective optimization
problem via compromise programming.275

3.2. Compromise Programming

As mentioned in Section 2, there are different ways to
solve a multiobjective optimization problem. All of them
seek a trade-off between the conflicting objectives. This
is normally represented in the criterion space, which is280

an image of the feasible set of the optimization problem
in terms of the objective functions. Figure 2 shows the
Pareto front (dashed red line), the feasible region (gray
area), and the two objectives to be minimized (f1 and f2).

f1 : Shifted load

f 2
:

C
os

t

. (ũ1, ũ2)

. (f1(x′), f2(x′))

. (û1, û2)

Figure 2: Generic description of criterion space.

The ideal or utopia point (ũ1, ũ2) is a point where all285

the objectives achieve their individual optima. Since the
objectives conflict, the utopia point is infeasible. There-
fore, we want to find a point on the Pareto front that
is a fair approximation of the utopia point. Compromise
programming finds a Pareto-efficient solution x′ that min-290

imizes the Euclidean distance with respect to the utopia
point [15]. This process does not require to assign weights
and it ensures a unique solution for convex Pareto fronts.
The optimization model can easily be adapted to other ap-
proaches such as e-constraint and normal boundary inter-295

section, if a representation of the Pareto front is required.
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We are dealing with objectives with different units and
different orders of magnitude, so it is necessary to nor-
malize their values. We use the nadir point (û1, û2) and
the utopia point for the normalization. The nadir point300

represents the worst value (maximum in this case) of each
objective function in the set of nondominated points. The
nadir and the utopia points provide respectively tight up-
per and lower bounds on the nondominated solution set
(dotted lines in Figure 2).305

We follow these steps to find the compromise solution.
First, we solve the optimization problem for each of the in-
dividual objectives to compute ũ1 and ũ2. We then use the
optimal solutions to compute û1 and û2. Finally we solve
a mixed binary quadratic optimization problem to find the310

closest feasible point to the utopia point. This approach
allows us to find a trade-off between the two objectives
without approximating the complete Pareto front. More-
over, the objective function remains convex, so the full
problem can be solved efficiently by off-the-shelf solvers.315

3.3. Optimization Model

The objective function in equation (1) minimizes the
squared distance to the utopia point. Equations (2) and
(3) account for the shifted load and the total cost respec-
tively. Equation (3) includes the cost of the energy bought320

from the grid, the cost of using the battery and solar pan-
els, and the incentive paid to the end-users for the DR
requests.

min
f

(
f1 − ũ1
û1 − ũ1

)2

+

(
f2 − ũ2
û2 − ũ2

)2

(1)

f1 =
∑
j∈J

∑
t∈T

yjt (2)

f2 =
∑
i∈I

∑
j∈J

∑
t∈T

Kitxijt +
∑
j∈J

∑
t∈T

Bs+jt

+
∑
j∈J

∑
t∈T

Fgjt −
∑
j∈J

∑
t∈T

Ltrjt
(3)

Next, we introduce the constraints. Constraints (4)
and (5) account for the shifting preferences. In (4) we en-
force the maximum accumulated shifted load for each user
j throughout the time horizon. Through (5) each user is
able to specify the maximum acceptable unmet demand at
the end of the horizon (n represents the last time frame).
In other words, a user can be flexible about when the de-
mand is satisfied but strict about having it met by the end
of the day. ∑

t∈T
yjt ≤ Yj ∀ j ∈ J (4)

yjn ≤ Ŷj ∀ j ∈ J (5)

The maximum amount of energy that can be drawn
from the grid is shown in constraints (6) and (7).325

x1jt ≤ CL ∀ j ∈ J, ∀ t ∈ T (6)

x2jt ≤ CH
j ∀ j ∈ J, ∀ t ∈ T (7)

The parameter CL is defined by the grid and is given
to all the users to ensure a minimal operation. On the
other hand, CH

j depends on each user and represents a
large constant from the optimization point of view; we
will revisit this definition in Section 4.1.330

Constraints (8) and (9) limit the capacity of the solar
panels and the battery respectively (battery expressed as
a percentage of Smax).∑

j∈J
gjt ≤ Gmax

t ∀ t ∈ T (8)

∑
j∈J

socjt ≤ 1 ∀ t ∈ T (9)

The flow conservation is represented in a similar way
to that of LS. Constraint (10) ensures that the inflows and335

outflows are balanced at every time step. It differs from
LS in that it accounts for the efficiency Γ of the battery,
which depends on the actual flow of energy and not on the
state of charge.

∑
i∈I

xijt + gjt + yjt + Γs−jt

= yjt−1 +Djt + s+jt ∀ j ∈ J, ∀ t ∈ T
(10)

A common feature of LS is the presence of Wagner–
Whitin costs. This cost structure favors production at the
time of the demand. The use of storage or the backlogging
of orders is penalized; this is traditionally the ideal sce-
nario in manufacturing processes. Wagner–Whitin costs
normally simplify the modeling stages in LS because they
discard solutions that are suboptimal and do not make
sense in a realistic scenario. We use TLOU pricing rather
than Wagner–Whitin costs; an analysis of our cost scheme
is presented in Section 4. Moreover, we penalize back-
logging through the biobjective approach without a spe-
cific monetary cost. We include constraint (11) to avoid
charging the battery with backlogged load; it describes the
physical energy flow toward the battery.

gjt +
∑
i∈I

xijt − s+jt ≥ 0 ∀ j ∈ J, ∀ t ∈ T (11)

Constraints (12)–(15) model the operation of the bat-
tery. Note that although the model registers every user
transaction involving the battery (s+jt, s

−
jt), the cycles are

constrained for the whole battery (i.e., the aggregated be-
havior of the |J | users determines the battery use).

socjt = socjt−1 +
s+jt − s

−
jt

Smax
∀ j ∈ J, ∀ t ∈ T (12)

Smax(αt − 1) ≤
∑
j∈J

(s+jt − s
−
jt) ≤ S

maxαt ∀ t ∈ T (13)
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−αt + αt−1 ≤ zt ∀ t ∈ T (14)

∑
t∈T

zt ≤ Z (15)

Constraint (12) updates the individual state of charge340

of each user. This value represents the amount of energy in
the shared battery available to the user at every time step.
Constraint (13) records the events when the battery (as a
whole) charges or discharges. Constraints (14) and (15)
limit the number of cycles. Note that these constraints345

do not differentiate between full and partial cycles. The
parameter Z is a policy adopted by the building, and the
optimization model will determine the type of cycle as a
function of the cost and satisfaction. Section 4.4 shows
how increasing Z affects the final number and type of cy-350

cles.
Solving a biobjective problem for the building does not

mean that each user will profit in a similar way from the
shared resources. Constraints (16) and (17) ensure a pro-
portional use of the shared resources with respect to the355

total demand of each user.

Ψmin
sol

∑
t∈T

Djt ≤
∑
t∈T

gjt ≤ Ψmax
sol

∑
t∈T

Djt ∀ j ∈ J (16)

Ψmin
bat

∑
t∈T

Djt ≤
∑
t∈T

socjt × Smax ≤ Ψmax
bat

∑
t∈T

Djt ∀ j ∈ J

(17)
Since

∑
t∈T gjt ≤

∑
t∈T Djt (i.e., a housing unit can-

not use more solar energy than its total demand), Ψmax
sol

≤ 1. An important assumption for the performance of
the planning module is that the aggregated demand is al-360

ways greater than the potential solar generation. This is
justified by the building configuration: there are multiple
housing units and limited space for roof-mounted panels.
If we discarded this assumption, the optimization model
could be adapted to absorb the excess solar generation into365

the battery or to sell it to the energy provider.
The parameter Ψmax

bat has a different interpretation.
The variable socjt tells us the level of energy in the bat-
tery for each user j and time frame t. For example, if the
user charges 1 kWh at t = 1 and keeps it in the battery370

until t = 10, then socj1, socj2, . . . , socj10 =1 kWh /Smax.
The summation over these periods will be 10 kWh of occu-
pied battery, regardless of the total demand. In this sense
Ψmax

bat can be > 1 but still represent fairness as a function
of total demand (a user with larger demand can charge375

the battery with more energy or keep the battery busy for
longer). The selection of the upper limits Ψmax

bat and Ψmax
sol

must consider historical demand profiles and capacities to
ensure proper utilization of the resources while encourag-
ing their fair allocation.380

For the lower bounds Ψmin
bat and Ψmin

sol it is necessary to
ensure feasibility, so they should satisfy

Ψmin
bat

∑
j∈J

∑
t∈T

Djt ≤ Smax × |T |

and
Ψmin

sol

∑
j∈J

∑
t∈T

Djt ≤
∑
t∈T

Gmax
t .

We discuss the fair allocation of resources in Section 4.5.
Constraints (18) and (19) account for the building re-

sponse in the case of a DR request:∑
j∈J

rjt = DRtφt ∀ t ∈ T (18)

x1jt+x2jt ≤ (CL+CH
j )(1−φt)+Djtφt−rjt ∀ j ∈ J,∀ t ∈ T

(19)
If the building agrees to provide DR, each user j will

limit his/her consumption to the forecast demand. Addi-
tionally, the willing participants contribute rjt units to the
grid’s load reduction requirement.385

Constraint (19) allows the users to reduce their con-
sumption below CL. If Djt − rjt ≤ CL the consumption
will stay within the capacity available at a lower tariff. If
CH

j +CL ≥ Djt−rjt ≥ CL the user will consume CL units
at the lower tariff and the additional energy at the higher390

tariff.
Finally, constraints (20) and (21) are the nonnegativity

and binary constraints:

x, y, soc, s+, s−, g, r, λ ≥ 0 (20)

αt, zt, φt ∈ {0, 1}, ∀ t ∈ T (21)

3.4. Performance Measures

We use the peak reduction (PR) index and the battery
use (BU) as measures of performance:

PR =

(
1−

max
t∈T

∑
i∈I

∑
j∈J

xijt

max
t∈T

∑
j∈J

Djt

)
× 100% (22)

BU =

∑
t∈T

∑
j∈J

socjt

|T |
× 100% (23)

Although these performance measures are not included395

in the optimization model, they are important assessments
of the operation of the building, and they are reported for
all our experiments. These measures could also be used to
select efficient solutions in the case where we approximate
the Pareto front.400
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4. Computational Experiments

We carried out various tests to assess the impact of
different conditions on the final results. In Section 4.1 we
present a base instance (identified with ∗) to illustrate the
results obtained with this approach. In subsequent sec-405

tions we present the results of our sensitivity analysis. In
Section 4.2 we explore how the peak reduction is affected
by the parameters Kit, C

L, and CH
j . In Section 4.3 we

change the end-user willingness to shift load to see the
evolution of the Pareto front and to estimate the expected410

consumer benefit of participating in this type of collabo-
rative scheme. In Section 4.4 we analyze the relationship
between the aggregated scheme and the operation of the
battery and its cycles. Finally, in Section 4.5 we explore
several options for the fair allocation of resources. Since in415

this case the time frames represent hours, there is a direct
equivalence between power (kW) and energy (kWh).

4.1. Base Instance

This instance, which has realistic parameters, includes
the following conditions:420

• The demand profiles Djt are obtained from Desimax
[27]. Ten profiles (|J | = 10) were chosen for four-
person households and were adjusted to the Cana-
dian context, where heating represents around 60%
of demand in winter [28]. The daily average energy425

consumption is 32.5 kWh per user.

• The battery capacity is Smax = 15 kWh, with a
power capacity of 15 kW. The efficiency is Γ = 90%,
and the number of cycles is Z = 2. This battery is
similar to the pole-mounted battery from eCamion430

in the context of the NSERC Energy Storage Tech-
nology Network. It is designed to facilitate the inte-
gration of energy management systems.

• There is a solar panel array of 75m2 with an average
daily generation of 34.8 kWh. The daily generation435

is computed with a historical average solar radiation
of 3.45 kWh/m2/day (Montreal in winter), and a ca-
pacity factor of 13.5% [29]. The parameter Gmax

t is
accordingly defined with a peak generation of 4 kWh.

• While Yj = {10, 15, 5, 10, 10, 20, 15, 10, 0, 0}, Ŷj =440

0 ∀j ∈ J . The planning horizon has 24 time frames:
T = {1, . . . , 24}.

• The on-peak periods are t ∈ {8, 9, 10, 11, 17, 18, 19},
the mid-peak periods are t ∈ {12, . . . , 16}, and the
off-peak periods are t ∈ {1, . . . , 7, 20, . . . , 24}.445

• There are six periods in which the building can meet
a DR request of 10 kWh.

• The lower capacity CL = 1.5 kW and

CH
j = max

t∈T
(0, Djt − CL), ∀ j ∈ J. (24)

This allows each user to consume up to the reported
peak demand in any time frame. The initial values450

yj0, socj0, and α0 are 0.

Figure 3 shows the results for the base instance, ob-
tained by solving the optimization model. Figure 3(a)
shows that the consumption from the grid differs consider-
ably from the original demand curve. A peak reduction of455

13.9% (t = 18 on the blue curve versus t = 20 on the yel-
low curve) is achieved by a combination of solar resources,
battery, and willingness to shift load. The battery is fully
charged at t = 7 and t = 16, which are the time frames
preceding the on-peak time frames. This generates a BU460

of 47.1%.
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Figure 3: Results for the building in the base instance.

Figure 3(b) shows that the users willing to shift de-
mand make their contribution during the congested peri-
ods and consume their requirement by the end of the day.
Additionally the building chooses to respond to 4 of 6 DR465

calls. We can see the reduction of 10 kW in time frames
9, 10, 18, and 19, between the blue (total demand) and the
yellow (total from grid) curves in Figure 3(a).

4.2. Cost Structure

The cost structure defined by Kit, B, and F determines470

some of the decisions made by the model. First, the cost
F derived from the amortization of the solar panels should
be lower than any price we can obtain from the grid. This
renewable resource will be utilized first, leaving a net de-
mand curve to be met by using the grid, storage, and load475

shifting.
As mentioned previously, Kit, C

L, and CH
j are set by

the utility. Since there is no direct peak control by the
utility, these parameters represent a way to influence the
user’s consumption profile. Each time frame t belongs to480

one of three classes: on-peak, mid-peak, or off-peak. For
each class the user pays either the lower or the higher
price, depending on the level of consumption. Figure 4

7



Higher

Lower

Off-Peak Mid-Peak On-Peak

Koff
L Kmid

L
Kon

L

Koff
H Kmid

H
Kon

H

Figure 4: Energy price policy.

shows a basic representation of the TLOU pricing policy.
485

We know that Koff
H > Koff

L , Kmid
H > Kmid

L , Kon
H >

Kon
L , Kon

L > Kmid
L > Koff

L , and Kon
H > Kmid

H > Koff
H .

In this section we establish some rules to determine how
those costs can help to achieve the desired effect in the
results. This analysis also includes the battery cost B,490

which we assume is obtained from cost amortization, and
the willingness of the users to shift load.

Equations (25) and (26) show two possible cost struc-
tures for a cheaper and a more expensive period (off-peak
and on-peak). The following reasoning can be extended495

to the other combinations: off-peak and mid-peak, and
mid-peak and on-peak.

Koff
L +B < Kon

L < Koff
H +B < Kon

H (25)

Koff
L +B < Koff

H +B < Kon
L < Kon

H (26)

A cost structure based on equation (25) will encourage
consumption of energy from the lower capacities before
going to the higher level. On the other hand, a cost struc-500

ture based on equation (26) will encourage using all the
off-peak resources before moving to more expensive time
frames.

The selection of the cost structure is key for the deci-
sion making in two specific circumstances:505

1. The user shifts load from the on-peak to the fu-
ture off-peak periods. In this case the battery cost is not
included (i.e., B = 0).

2. The user wants to charge the battery in the off-peak
time frames to use the energy in the later on-peak periods.510

Here the battery cost B > 0 is considered.
Table 1 reports the results for both cost structures.

The parameter CL increases by 0.5 kWh from one instance
to the next.

First, observe that the BU is similar in every case; it515

depends on the capacity of the battery and the number of
time frames where using the battery makes sense.

Observe also that the instances with equation (25) re-
port a better PR. In fact, the peak demand increases con-
siderably for the instances with equation (26). Figure 5520

shows the results for instance 6. In this case the cost struc-
ture based on equation (26) encourages a very high load
shifting from time frame 19 (on-peak) to time frame 20
(off-peak), since it is always cheaper to consume in off-
peak periods regardless the consumption level.525

Table 1: Comparison of cost structures and available capacities

Inst Kit CL f1 f2 PR BU
1 (25) 1.0 31.0 2973.9 −0.8 44.7
2∗ (25) 1.5 32.2 2750.4 13.9 47.1
3 (25) 2.0 33.7 2615.0 10.2 47.1
4 (25) 2.5 33.4 2535.3 −1.6 49.1
5 (26) 1.0 34.6 2703.4 −46.5 42.9
6 (26) 1.5 34.6 2605.6 −25.7 47.1
7 (26) 2.0 34.0 2543.3 −10.6 47.1
8 (26) 2.5 34.0 2499.8 −17.5 43.8
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Figure 5: Results for the building in the instance 6 of cost analysis.

In general terms, equation (25) leads to a more ho-
mogeneous use of the available capacities, where energy is
first consumed in the lower levels regardless of the time of
use.

Of the experiments with equation (25), instances 2∗530

and 3 achieve better PR; the peak slightly increases in
instances 1 and 4. A low CL will be consumed quickly
and the shiftable demand will accumulate in the higher
level of the cheapest time frames. A large CL will render
the higher level useless and will accumulate the shiftable535

demand in the lower level of the cheapest time frames. In
both cases we basically move the peak from an expensive
period to a cheaper one. Figure 6 shows the peak reduction
as a function of CL using the costs in (25). We see that the
PR is positive for only a small range of CL, approximately540

1.1 to 2.4.
It is important to recall that PR is not considered in

the optimization problem, and our approach achieves the
PR as an additional effect. Nevertheless, our discussion
can guide future decisions about how to determine the545

capacity profiles.
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Figure 6: Peak reduction as a function of CL.

4.3. Willingness to Participate

In this section we show how the end-user willingness
to shift load affects the results. We change the parameter
Yj in each instance in Table 2. In instance 1 the users550

are more willing to shift load, and in instance 5 the users
prefer not to change their consumption patterns.

Table 2: Results for different populations

Inst ũ1 ũ2 f1 f2 PR BU Φ
1 0.0 2632.1 51.0 2703.5 17.2 47.1 4/6
2∗ 0.0 2678.2 32.2 2750.4 13.9 47.1 4/6
3 0.0 2774.2 10.1 2816.4 14.6 46.8 4/6
4 0.0 2838.1 3.2 2854.4 16.4 49.7 3/6
5 0.0 2873.2 0.5 2876.0 13.7 46.5 2/6

The utopian value ũ1 remains the same while ũ2 in-
creases as the willingness to shift load reduces. The com-
promise solution (f1, f2) becomes closer to the utopia point.555

The evolution of the Pareto front is shown in Figure 7.

f1

f2

.U1

.F 1

Y 1

f1

f2

.U3

.F 3

Y 3

f1

f2

.U5
.F 5

Y 5

Figure 7: Evolution of the Pareto front.

Y inst, F inst, and U inst represent the aggregated will-
ingness, the compromise solution, and the utopia point for
each instance respectively. The BU has similar behavior
to that in Section 4.2.560

Although we achieve PR in all the instances, the be-
havior with respect to Yj is not clear: Yj can generate a
higher or lower PR depending on the selection of CL and
the prices.

In the last column we introduce the ratio Φ, which is565

defined to be the total number of DR calls accepted by
the building divided by the potential DR requests. As the
willingness to shift load decreases the building responds to

fewer DR requests. Figure 8 shows the results for instance
5. In this instance the users are not willing to shift load,570

therefore the backlogged demand is zero. Additionally, we
can see how the building can only provide DR reduction
in time frames 9 and 18.
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Figure 8: Results for the building in the instance 5 of user willingness.

Table 3 gives the individual cost per user and instance.
Typically, the more willing the user is to shift load the575

lower the total cost. In the last column we compute the
total cost for a scenario Ω without the collaborative ap-
proach. In this case there are no resources (storage, solar
panels, or DR incentives). The users meet their demands
as they occur, paying the same price rates Kit.The last row580

of the table shows the average savings (Sav) with respect
to the scenario Ω.

Table 3: Total cost per housing unit

User Inst1 Inst2 Inst3 Inst4 Inst5 Ω
1 177.4 179.9 181.3 183.1 183.1 211.6
2 328.6 341.7 352.3 363.9 357.8 446.5
3 278.0 286.6 308.3 282.7 284.0 453.9
4 301.4 305.6 309.8 315.4 323.0 412.8
5 203.6 206.6 210.0 213.0 213.0 251.3
6 384.9 383.3 427.2 422.5 433.6 529.4
7 216.1 216.7 218.2 223.4 223.1 276.2
8 270.8 271.8 251.8 288.3 296.4 357.4
9 238.0 248.4 247.7 248.0 248.0 278.8
10 304.8 309.9 310.0 314.2 314.0 369.0
Sav 25.0% 23.3% 21.4% 20.3% 19.7% 0%

One of the key assumptions of this work is that the
parameters B and F , representing the amortization costs
of the battery and the solar panels, must be lower than585

the rates that come from the grid or the building opera-
tor. Therefore, the collaboration allows the user to take
advantage of resources that would be more expensive to
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own individually. In general terms, the more willing the
user is to shift load, the lower the total cost will be. How-590

ever, this statement is not necessarily true. A willing user
may not be asked to shift load; this depends on the global
benefit that the shifting provides to the community (be-
cause the model gives priority to users that can shift load
from on-peak periods).595

4.4. Battery Cycles and Aggregation

One of the most common issues with storage units is
the proper use of the resource to minimize its degradation.
Although in this paper we assume an amortization cost to
take this into account, we also included constraints to con-600

trol the number of cycles. The results for different values
of Z are presented in Table 4.

Table 4: Results for different maximum number of cycles

Inst u1 u2 f1 f2 PR BU z/Z
1 0.0 2708.6 35.1 2789.3 13.9 52.7 1/1
2∗ 0.0 2678.2 32.2 2750.4 13.9 47.1 2/2
3 0.0 2678.2 32.1 2750.4 13.9 47.1 3/3
4 0.0 2678.2 32.1 2750.4 13.9 47.1 3/6
5 0.0 2678.2 32.1 2750.4 13.9 47.1 3/12

We observe that the number of cycles is fairly stable
at z = 3, giving the same compromise solution regardless
of the value of Z. What happens is that the number of605

cycles is determined by the cost structure in combination
with the user demand. There are only some periods where
it is sensible to use the battery: charge in the current
(cheaper) frame to discharge in a future (more expensive)
one. Note that the model will work even when the cycles610

constraints are removed. On the other hand, there are
some cases when it is convenient to monitor the number
of cycles. For example when the demand profiles change
considerably from user to user, or when the prices vary in
a real time context.615

4.5. Allocation of Resources

In Section 3.3 we introduced the fair allocation of the
shared resources with constraints (16) and (17). In this
section we assess the effect of this on the objective func-
tion. We test three models (the original and two varia-620

tions). In the first we do not include a fairness constraint;
in the second we include the original constraints (16) and
(17); and in the third we include constraints (27) and (28)
instead:

∑
t∈T

gjt −
∑
t∈T

gj−1t = 0 ∀ j ∈ J | j > 1 (27)

∑
t∈T

socjt −
∑
t∈T

socj−1t = 0 ∀ j ∈ J | j > 1 (28)

Constraint (27) ensures that all the users obtain the625

same amount of energy from the solar panels. In a sim-
ilar way, constraint (28) ensures that all the users have
the same accumulated state of charge over the time hori-
zon (i.e., the battery is equally utilized). We report the
results in Table 5. Although the three models report the630

same u1 = 0, they have different u2 values. Model 1 gives
the lowest u2 since no constraints related to fair allocation
were considered, giving priority to the overall cost for the
building. On the other hand, Model 3 reports the high-
est u2 because enforcing the same amount of resources for635

each user is inefficient when the users have significantly
different consumption profiles. These utopia values affect
the compromise solution f1 and f2 as explained in Section
3.2.

Table 5: Results for different fairness constraints

Model u1 u2 f1 f2
1 0.0 2665.2 33.3 2733.0
2∗ 0.0 2678.2 32.2 2750.4
3 0.0 2695.6 32.0 2767.6

Figure 9 presents more detailed results for each user.640

Figure 9(a) shows the solar allocation expressed as a per-
centage of the demand (

∑
t∈T gjt/

∑
t∈T Djt). Figure 9(b)

shows the battery allocation (
∑

t∈T socjt × Smax/
∑

t∈T Djt),
and Figure 9(c) gives the shifted load as a percentage of
the total shiftable load (

∑
t∈T yjt/Yj).645
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Figure 9: Comparison of allocation of resources per user. Solar and
battery are expressed as a percentage of the demand, and shifted
load is expressed as a percentage of the total shiftable load.

The percentages for model 1 vary considerably among
the users in Figures 9(a) and (b). The percentages for
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model 3 vary as a function of the individual user demand
in Figures 9(a) and (b). Finally, model 2 enforces Φmin

sol =
10% and Φmin

bat = 50% in Figures 9(a) and (b) respectively,650

providing a more balanced allocation of the resources.
In Figure 9(c) we can see that the amount of shifted

load does not change significantly with the selection of
the model. As mentioned in Section 4.3, the optimal load
shifting depends on being able to shift load at the right655

moment during the day. In other words, user 3 with Y3 = 5
can be asked to shift near 100% of his shiftable load, while
user 5 with Y5 = 10 is just shifting about 20%. This
could lead to another form of fair allocation of resources
since it makes sense that the users that contribute more660

to the building performance can obtain a larger share of
the resources in order to minimize their individual costs.

5. Conclusion

The approach presented in this work contributes to the
planning and operation of smart buildings. It has a struc-665

ture similar to that of classic LS, but it supports decision-
making in the context of energy consumption for a multi-
unit building. We address two conflicting objectives, cost
and comfort, via the compromise solution. The proposed
approach balances the two objectives while providing de-670

mand response to the grid. This is possible because of
the combination of the available resources (solar and stor-
age), active user participation, and a cost structure that
provides incentives for load shifting and peak reduction.

We presented a detailed analysis of the effect of the675

different parameters on the compromise solution. First,
we introduced a base instance that reports around 23%
cost savings for the users and a PR of 13.9%. Then, we
assessed four cases in which we changed the parameters
or the model. In the first case, we explored how the cost680

structure affects the PR. In the second case, we see that
users more willing to participate can obtain more cost sav-
ings. In the third case, we show that the number of battery
cycles depends on the demand profiles and the cost struc-
ture. Finally, we see that a fair allocation of resources685

among the users reduces the global performance of the
building but may facilitate future user participation in the
program.

This analysis provides insights into the conditions needed
to ensure the long-term operation and economic viability690

of the approach for the building and the individual users.
The proposed approach is applicable in practice because,
as discussed in Section 3, the necessary technology is al-
ready available. Nevertheless, we acknowledge that there
are necessary conditions to be satisfied before successfully695

implementing this approach. First, the technology should
be affordable or the savings for the user should be enough
to justify the investment in the technology. Second, the
utility has to define the prices and capacities of TLOU in
such a way that the TLOU is operationally effective for700

the utility and attractive enough for the end-users. This
is not a trivial task and is currently the subject of ongoing

research. Finally, most of the decisions on the user side
have to be made in an automatic way. This automation,
combined with the potential economical benefits, would705

likely ensure user engagement with the program.
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