14 research outputs found
A Confidence Framework for the Assessment of Optical Flow Performance
Optical Flow (OF) is the input of a wide range of decision support systems such as car driver assistance, UAV guiding or medical diagnose. In these real situations, the absence of ground truth forces to assess OF quality using quantities computed from either sequences or the computed optical flow itself. These quantities are generally known as Confidence Measures, CM. Even if we have a proper confidence measure we still need a way to evaluate its ability to discard pixels with an OF prone to have a large error. Current approaches only provide a descriptive evaluation of the CM performance but such approaches are not capable to fairly compare different confidence measures and optical flow algorithms. Thus, it is of prime importance to define a framework and a general road map for the evaluation of optical flow performance. This thesis provides a framework able to decide which pairs ”optical flow - confidence measure” (OF-CM)are best suited for optical flow error bounding given a confidence level determined by a decision support system.To design this framework we cover the following points: 1) Descriptive scores. As a first step, we summarize and analyze the sources of inaccuracies in the output of optical flow algorithms. Second, we present several descriptive plots that visually assess CM capabilities for OF error bounding. In addition to the descriptive plots, given a plot representing OF-CM capabilities to bound the error, we provide a numeric score that categorizes the plot according to its decreasing profile, that is, a score assessing CM performance. 2) Statistical framework. We provide a comparison framework that assesses the best suited OF-CM pairfor error bounding that uses a two stage cascade process. First of all we assess the predictive value of the confidence measures by means of a descriptive plot. Then, for a sample of descriptive plots computed over training frames, we obtain a generic curve that will be used for sequences with no ground truth. As a second step, we evaluate the obtained general curve and its capabilities to really reflect the predictive value of a confidence measure using the variability across train frames by means of ANOVA.The presented framework has shown its potential in the application on clinical decision support systems. In particular, we have analyzed the impact of the different image artifacts such as noise and decay to the output of optical flow in a cardiac diagnose system and we have improved the navigation inside the bronchial tree on bronchoscopy
Mental Workload Detection Based on EEG Analysis
The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model's training. In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation
Caronte: plataforma Moodle con gestión flexible de grupos. Primeras experiencias en asignaturas de Ingeniería Informática
En este artículo se presenta Caronte, entorno LMS (Learning Management System) basado en Moodle. Una característica importante del entorno es la gestión flexible de grupos en una asignatura. Entendemos por grupo un conjunto de alumnos que realizan un trabajo y uno de ellos entrega la actividad propuesta (práctica, encuesta, etc.) en representación del grupo. Hemos trabajado en la confección de estos grupos, implementando un sistema de inscripción por contraseña.
Caronte ofrece un conjunto de actividades basadas en este concepto de grupo: encuestas, tareas (entrega de trabajos o prácticas), encuestas de autoevaluación y cuestionarios, entre otras.
Basada en nuestra actividad de encuesta, hemos definido una actividad de Control, que permite un cierto feedback electrónico del profesor sobre la actividad de los alumnos.
Finalmente, se presenta un resumen de las experiencias de uso de Caronte sobre asignaturas de Ingeniería Informática en el curso 2007-08.Peer Reviewe
Caronte: plataforma Moodle con gestión flexible de grupos. Primeras experiencias en asignaturas de Ingeniería Informática
En este artículo se presenta Caronte, entorno LMS (Learning Management System) basado en Moodle. Una característica importante del entorno es la gestión flexible de grupos en una asignatura. Entendemos por grupo un conjunto de alumnos que realizan un trabajo y uno de ellos entrega la actividad propuesta (práctica, encuesta, etc.) en representación del grupo. Hemos trabajado en la confección de estos grupos, implementando un sistema de inscripción por contraseña. Caronte ofrece un conjunto de actividades basadas en este concepto de grupo: encuestas, tareas (entrega de trabajos o prácticas), encuestas de autoevaluación y cuestionarios, entre otras. Basada en nuestra actividad de encuesta, hemos definido una actividad de Control, que permite un cierto feedback electrónico del profesor sobre la actividad de los alumnos. Finalmente, se presenta un resumen de las experiencias de uso de Caronte sobre asignaturas de Ingeniería Informática en el curso 2007-08.Este trabajo ha sido financiado por la convocatorias de la DGU del Ministerio de Educación y Ciencia 2007EA2007 0286 y DGU EA2008-0089) y por la convocatoria de AGAUR 2008MQD00048
Weather Classification by Utilizing Synthetic Data.
Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets
Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals
The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment
Uno : revista de didáctica de las matemáticas
Resumen basado en el de la publicaciónSe presenta una propuesta dirigida al alumnado de primaria. Esta se fundamenta en el uso de un videojuego que permite proponer actividades complementarias sobre geometría del espacio utilizando materiales manipulativos. A su vez, se introduce la resolución de problemas matemáticos utilizando las mecánicas de juego que proporciona el videojuego.Biblioteca de Educación del Ministerio de Educación y Formación Profesional; Calle San Agustín, 5 - 3 Planta; 28014 Madrid; Tel. +34917748000; [email protected]
EEG Dataset Collection for Mental Workload Predictions in Flight-Deck Environment
High mental workload reduces human performance and the ability to correctly carry out complex tasks. In particular, aircraft pilots enduring high mental workloads are at high risk of failure, even with catastrophic outcomes. Despite progress, there is still a lack of knowledge about the interrelationship between mental workload and brain functionality, and there is still limited data on flight-deck scenarios. Although recent emerging deep-learning (DL) methods using physiological data have presented new ways to find new physiological markers to detect and assess cognitive states, they demand large amounts of properly annotated datasets to achieve good performance. We present a new dataset of electroencephalogram (EEG) recordings specifically collected for the recognition of different levels of mental workload. The data were recorded from three experiments, where participants were induced to different levels of workload through tasks of increasing cognition demand. The first involved playing the N-back test, which combines memory recall with arithmetical skills. The second was playing Heat-the-Chair, a serious game specifically designed to emphasize and monitor subjects under controlled concurrent tasks. The third was flying in an Airbus320 simulator and solving several critical situations. The design of the dataset has been validated on three different levels: (1) correlation of the theoretical difficulty of each scenario to the self-perceived difficulty and performance of subjects; (2) significant difference in EEG temporal patterns across the theoretical difficulties and (3) usefulness for the training and evaluation of AI models
ABP semipresencial: una propuesta de ABP usando herramientas online: organización, seguimiento y evaluación
En esta comunicación se presenta una experiencia de ABP de una asignatura de 60 alumnos de ingeniería informática del curso 2012-13 utilizando plataformas online como OpenMeetings en Moodle para realizar el seguimiento de reuniones grupales de los alumnos así como sesiones de tutorías. El uso de herramientas online es por la limitación de poder tutorizar sólo 30 alumnos por semana. Con las plataformas online los alumnos envían vídeos de sus reuniones no tutorizadas al profesor, que las utiliza para la evaluación. Los autores utilizan ABP desde 2004-05, incorporando mejoras en la organización, seguimiento y evaluación, que se muestran en el artículo. Como resultados se muestran los alumnos matriculados que escogen el itinerario ABP para cursar la asignatura, así como la valoración que hacen los alumnos de la metodología cursada. En el caso de los recursos online, se comentan los resultados de una encuesta hecha a los alumnos, que motiva el reforzar el uso de estas herramientas.SIN FINANCIACIÓNNo data 201