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Abstract: Weather prediction from real-world images can be termed a complex task when targeting
classification using neural networks. Moreover, the number of images throughout the available
datasets can contain a huge amount of variance when comparing locations with the weather those
images are representing. In this article, the capabilities of a custom built driver simulator are explored
specifically to simulate a wide range of weather conditions. Moreover, the performance of a new
synthetic dataset generated by the above simulator is also assessed. The results indicate that the use
of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the
CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in
vision-based datasets.

Keywords: weather classification; synthetic data; dataset; autonomous car; computer vision; advanced
driver assistance systems; deep learning; intelligent transportation systems

1. Introduction

Simulation and virtual testing will play an increasingly relevant role, as they provide
a very effective way to deal with the high number of scenarios Connected and Automated
Driving (CAD) vehicles will encounter [1]. Road accidents related to adverse weather
conditions play a huge part in disrupting the flow of traffic in a busy city environment [2–4].
The data available at present contains a large amount of variation. Figuring out a partic-
ular weather condition is a straight forward task for a normal human being but can be
quite challenging for a computer vision system [5–7]. To overcome the challenges, neural
networks, in recent decades, have revolutionized computer vision systems to detect the
weather condition using images as an input. Indeed, Convolutional Neural Networks
(CNN) have been deployed in various fields such as ship detection [8–13], object tracking
in endoscopic vision [14,15], nuclear plant inspection [16–18], transport systems [19,20],
and other complex engineering tasks [21,22]. Yet, there is still a lot of ground to cover. In
the case of weather recognition on roads, the main challenges are: variability in elements
such as camera placement and road layouts [23] and the machine learning methods such
as CNN. Under such circumstances, there is a need to explore more methods of filling the
gaps in between real world images; ideally, a set of images recorded in the same location
but with different weather conditions would maximize the efficiency of a machine learning
system. This is the main reason why the use of synthetic data can be more productive as
compared to the real-world counterpart. In this paper, there are two main objectives: the
first is to assess the modifications made to the driver simulator, which was previously used
for driver vehicular interactions [24]. The second objective is to test the performance of the
generated dataset with other comparable groundtruth datasets.
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A custom-built virtual simulator that specializes in varying weather systems was
previously implemented [25]. It utilizes Unity3d to simulate the weather with accurate
lighting effects. The simulator environment was based on the real-world location of central
Colchester, United Kingdom. It features a good mix of wide-open road and inner-city
roads. An autonomous car was driven at different hours of the day in weather conditions
ranging from sunny, cloudy, or rainy to foggy with different camera angles. The final
dataset comprises 108,333 images, with approx. 35,000 images per class. The results show
that state-of-the the art CNN architectures trained on the synthetic dataset were able to
achieve an accuracy as high as 74% when tested on a real-world dataset [26].

The paper is organized in four sections. In Section 1, the main topic of the article
is introduced in the light of recent advances made in this field, the simulator used, and
the datasets used for weather classification training and testing. Section 2 presents a
detailed description of the weather classification pipeline and the methodologies. Section 3
evaluates the experimental results and inferences that can be drawn. Finally, Section 4
concludes the research work presented in this article that can be used as a guide for
future works.

1.1. Related Work

Most of the previous research includes the use of polarized and infrared cameras. The
use of such cameras can provide some plausible data, but the installation costs can easily
be substantial [27]. In order to overcome this issue, the use of RGB cameras is preferred
because they are simpler and cost-effective, hence making it viable for mass production.

A study performed by Omer and Fu [28] used color cues to add illumination variance;
however, their approach required the detection of white road lines to detect the road area,
which can be quite challenging in severe winter weather conditions.

Most of the studies aimed toward driver assistance systems have been performed with
regard to rainy weather classifications [29,30]. A study performed by Lu et al. [31] dealt
with two class weather classification which included sunny and cloudy. In that study, the
authors proposed a new data augmentation scheme to substantially enrich the training
data, which was then used to train a latent SVM framework to make the solution insensitive
to global intensity transfer. Another study [32] dealt with multi-class weather classification,
which only used fixed camera points.

With regard to synthetic datasets, there is a lot of research being carried out to fill the
gaps between real world data with synthetic data. There are some driver simulators that
can fill in the void by generating synthetic datasets for weather classification. CARLA [33]
is one such simulator that aides in autonomous research. It comprises a built in weather
system that can be used to generate weather classification datasets. The Synthia dataset [34]
is another example, which comprises 200,000 plus images with varying dynamic situations
such as a clear sky, rain, and night. Hao et al. [35] developed a weather simulator that
could replicate the weather at a given time in a virtual environment. However, it lacked
visual fidelity for our experiments. The article also had specific requirements for the camera
position’s location on the driver’s car.

Another plausible direction of the research into weather monitoring has been the
use of microwave-based Synthetic Aperture Radar (SAR) imaging. Unlike optical sensors,
this tool is unaffected by weather conditions. This is the main reason that they have
been used for high speed ship detection [36,37]. The SAR images are used as input to a
grid convolutional neural network (G-CNN) to detect ships and their speeds. Another
prominent work has used a depthwise separable convolution neural network (DS-CNN)
to detect high speed ships [38]. Another direction of research has focused on small sized
ships [39] and the unperceived imbalance problem [40]. However, connection to a satellite
is not always possible; thus, in this research, optical sensors were considered.
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1.2. Contributions

Currently, autonomous driving cars deploy a series of sensors to classify the weather
condition. However, this solution is not holistic and requires additional computational
resources in terms of power and memory. More often, each weather type requires a specific
sensor. For instance, rain is detected using a humidity sensor that plays no role in detecting
sunny weather. Thus, using a camera to capture images and detecting weather using a
single image is not only economical but also computationally less expensive. Finally, to our
knowledge, most of these datasets are not aimed toward weather specifically.

For all these reasons the main technical contributions of this paper are the following:

1. Holistic Weather Classification Solution. The solution proposed in this paper is
a holistic solution in the sense that has been built from the ground up focusing on
weather simulations;

2. Simulator-based Training Dataset. Detection of weather using a single image requires
a large images dataset with varying features for training CNNs, which turns out to be
a bottleneck. In this work, a synthetic dataset for training CNNs is proposed;

3. Real-Time Evaluation. The state-of-the-art CNNs are evaluated on real-time testing
datasets to detect the accuracy of weather classification. Moreover, our classification
approach differs from others in the sense that instead of processing only a portion of
the image, it processes the entire image. This specific approach allows the system to
record subtle changes in light intensity and color variations, which can be crucial in
distinguishing between different weather conditions, such as cloudy and sunny.

1.3. The Simulator

The simulator that this study utilizes was previously used for the study of driver
vehicular interaction. Ref [25] as shown in the Figure 1. Although it is capable of recording
a driver’s behavior in detail, the setup was altered for this study. In particular, it is capable
of recording multi-camera vehicle viewpoints. It was modified to reflect the real-world
location of Colchester, United Kingdom. This includes a good variation of two-lane as
well as single-lane roads. It also comprises a highly detailed interior as shown in Figure 2
as well as exterior, so the simulator capabilities can be extended even further if required
for future studies. Moreover, a virtual camera was fitted to the top of the windshield just
above the rear view mirror to better capture the environment ahead. Figure 3 shows the
autonomous car that was used to record the necessary viewpoints for this study.

The virtual environment was roughly based on the small town of Colchester located in
the Eastern United Kingdom. The initial goal was to construct a virtual motorway section
based on the M25, but that was later amended for a more varied road environment. The
total travel distance was over one mile, which consisted of a fair balance of double lane
roads, roundabouts, and inner town single lane roads as shown in Figure 4.

Figure 1. Simulator.
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Figure 2. Virtual Interior.

Figure 3. Virtual Car.

The virtual world also contained a wide range of randomly generated traffic cars that
added to the realism and complexity of its real-world counterpart. The simulator was
designed in such a way that it provided a considerable amount of modification control for
the researcher. The goal was to make it accessible for anyone to start generating varied
weather conditions for autonomous research. In addition, it has the ability to adjust for a
virtually unlimited number of weather variations and the amount of images that can be
generated at any given time.

1.4. The Dataset

The generated dataset provides a plausible amount of varied weather conditions. The
main classes include sunny, cloudy, foggy, and rainy. Each class then contains further sub-
classes involving the same class captured every hour from 9 AM to 4 PM. This methodology
provided the most efficient learning material for CNNs and deep learning algorithms, as
it provides the same location within varied lighting and weather conditions. For each
recording session, the virtual car was allowed to run through the circuit, which resulted
in the capture of approximately 2600 images. Each session was recorded on an hourly
basis, i.e., for a clear day, weather for each session of driving was captured at 9:00, 10:00,
11:00, 12:00, 1:00, 2:00, 3:00, and 4:00. This provided a much needed variation in the overall
shadow and lighting conditions for a varied dataset generation. Figure 5 shows the four
main classes captured at various locations through different sessions. Table 1 shows the
distribution of images per class. The resolution of each image was recorded at 1280 × 720;
the channels used were red, green, and blue. Notice that the validation images for the foggy
class only consist of five images; this is because a foggy image is by far the most specific in
color tone and channel information. Moreover, the quantity of validation images was set
by the creators of the Berkeley Deep Drive dataset.
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Figure 4. Proposed Environment.

Table 1. No. of Training images (Our dataset) and Testing images (BDD) per class distribution.

Class Training Testing

Clear 9613 1764
Cloudy 38,949 1677
Foggy 29,914 5
Rainy 29,857 396

Total 108,333 3842

Moreover, extensive care was taken to simulate secondary imperfections such as water
droplets on the camera lens for distortion, traffic car signal bloom effects, and water shower
behind traffic car wheels. Additional camera angles, such as left view, right view, and
back view, were also captured to meet the challenge of the diverse task and absence of
discriminatory features among various weather conditions.

(a) Clear (b) Cloudy (c) Rainy (d) Foggy

Figure 5. Synthetic Weather Dataset.

Our synthetic dataset was evaluated on the Berkeley Deepdrive dataset [26], because
it provides a considerable variation of varying weather conditions in a fairly balanced
annotated pattern as shown in the Figure 6.
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(a) Clear (b) Cloudy (c) Rainy (d) Foggy

Figure 6. BDD (Berkeley Deep Dive) Dataset.

2. Weather Classification

To check to what extent our synthetic dataset was useful for weather classification,
we applied a number of deep learning networks to test the dataset. One of the most
famous deep learning architectures, Convolutional Neural Networks (CNN) have been
able to perform various vision tasks with capabilities comparable to humans. However,
CNN’s performance is highly dependent upon the large size of the training data. This
problem intensifies for a weather classification task as the real-time weather variation data
availability for self-driving cars is difficult [41] to attain. Based on this problem, we tried to
gauge whether different CNN architectures trained using synthetic data were good enough
to classify the weather captured in real time.

Transfer learning is a powerful machine learning technique, which allows re-usage of
a model for different tasks. It has gained immense popularity for computer vision tasks
where pretrained CNN architectures are used as the standard starting point given the vast
resources in terms of computation and time required to develop CNNs from scratch.

The pipeline used for the work described in this paper is visually represented in
Figure 7. The pipeline operates in a fashion where the weights of the entire pretrained
network were frozen except the classification layers at the end. The softmax layer is added
for multi weather classification. The softmax layer (4,1) is added because the number of
classes is 4. The classifier layers of the pretrained networks were retrained on the proposed
synthetic weather dataset. The test real-time images were passed through the retrained
CNN models to extract predict the network’s accuracy.

The classifier layers were trained on the synthetic images and tested on the real-world
dataset Berkeley DeepDrive [26]. After performing the experiment, the mean Average
Precision (mAP) was calculated for each of the models.
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Figure 7. Pipeline: Step 1: The pre-trained network is loaded, Step 2: unfreeze classification layers and add
softmax layer (4,1), Step 3: Train the weights of classification layers with synthetic dataset, Step 4: Test the

network accuracy with real time test dataset.
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Figure 7. Pipeline: Step 1: Load the pretrained network, Step 2: Unfreeze the classification layers
and add a softmax layer (4,1), Step 3: Train the weights of the classification layers with the synthetic
dataset, Step 4: Test the network accuracy with a real time test dataset.

Pretrained Model

The pretrained models used for predicting weather are described in depth in the
following subsections:

1. AlexNet
AlexNet [42] can easily be considered as a breakthrough network that has popularized
deep learning approaches against traditional machine learning approaches. With eight
layers, AlexNet won the famous object recognition challenge known as called the
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. It is a variant
of an artificial neural network, where the hidden layers comprise convolutional layers,
pooling layers, fully connected layers, and normalization layers. A few of its standout
features are the addition of nonlinearity, use of dropouts to overcome overfitting, and
a reduction in network size due to overfitting.

2. VGGNET
VGGNET [43], a 19-layer network, was proposed as a step forward from AlexNet
and was a runner up in the ILSVRC-2014 challenge. As an improvement, the large
kernel size of the first and second convolutional layers of AlexNet net were replaced
by multiple 3 × 3 size kernel filters. The small-size filters allow the network to have a
large number of weight layers. Nonlinearity in decision making was incremented by
adding 1 × 1 convolution layer.

3. GoogleLeNet
GoogleLeNet [44], a 22-layer network, was the winner of the ILSVRC-2014 challenge.
It was proposed as a variant of an inception network to reduce the computational
complexity of traditional CNNs.The inspection layer had variable receptive fields to
capture sparse correlation patterns in the feature map.

4. Residual Network
Residual Network [45] was the winner of the ILSVRC-2015 challenge. It was proposed
with the aim of overcoming the problem of a vanishing gradient in ultra-deep CNN
by introducing residual blocks. Various versions of Residual Network (ResNet) were
developed by varying the number of layers as 34, 50,101, 152, and 1202. The popular
Residual Networks ResNet50 and ResNet101 were used in our experiment.

3. Results

In this section, we evaluate the various CNN models trained on our proposed syn-
thetic dataset and compare their performance on the BDD dataset. The synthetic dataset
contained images annotated with four weather classes. The number of epochs was set to
500. The learning rate of the stochastic gradient descent (SGD) optimizer for cross-entropy
minimization was set to 0.0001. These parameters were deduced empirically by analyzing
the training loss. As a regularization strategy during the training phase, two data augmen-
tation techniques were used for all architectures. The first technique took random crops of
training images, and the second technique applied rotation to the training images. All the
algorithms were implemented using MATLAB, and the experiments were performed on a
Tesla K80 with 12GB GPU memory and 916.77 GB storage.

Each experiment for calculating accuracy for the given pretrained model on the testing
dataset was conducted 10 times. Then, the average accuracy for each model was calculated
and denoted as mean Average Precision (mAP). The results tabulated in Table 2 show that
the mAP for all the architectures varied between 60% and 74%. The accuracy variation over
each epoch is shown in Figures 8 and 9.

Table 2. Results from CNN evaluations.

Architecture mAP Trainable Parameter Time (min)

AlexNet 0.6856 ± 0.012 61M 986
VGGNET 0.7334 ± 0.023 138M 2930
GoogleLeNet 0.6034 ± 0.009 7M 618
ResNet50 0.6183 ± 0.025 26M 1020
ResNet101 0.63 ± 0.006 44M 1242

ResNet architectures achieved the lowest accuracy due to their complicated multi-
branch designs, i.e., residual addition in ResNet, as the fine tuning of hyper-parameters
and other customization becomes difficult. Given the constraint of hardware in self-driving
cars, the inference is slowed down along with the reduction in memory utilization [46].
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The most efficient weather classification accuracy on the testing dataset was achieved
by the VGGNet architecture. These results indicate that the optimization achieved by the
inclusion of smaller kernel filters at the initial convolutional layers had a positive effect on
the overall task of weather classification. The universal effectiveness of the performance of
VGGnet to extract deep features has also been affirmed previously by the state-of-the-art
PFGFE-Net [13] that uses VGGNet as a backbone.

The training times from Table 2 reveal that they were directly proportional to the
parameter due to the backpropagation process to retrain the weights of classification layers.
However, with a closer look, one can conclude the training of the weather classification
process for self driving cars was performed in the cloud, and it was a one time process.
In the particular case of VGG, the training was time intensive, but it was a one time task.
The testing time for determining weather from a single image on average using VGG was
15.67 fps, which is real-time efficient. Concluding the potential of this type of architecture
on a classification task with a paucity of datasets draws attention to the possibility of more
experimentation by training on a larger synthetic dataset with more diverse classes.

(a) AlexNet

(b) VGG

Figure 8. Cont.
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(c) GoogleNet

Figure 8. Accuracy variation over each epoch for (a) AlexNet, (b) VGG, and (c) GoogleLeNet models.

(a) ResNet50

(b) ResNet101

Figure 9. Accuracy variation over each epoch for Residual Networks (a) ResNet50 and (b) ResNet101.
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4. Conclusions

This paper highlighted the development of a custom driver simulator that was able to
produce complex weather scenarios in immaculate detail. The manuscript also highlighted
the possibility of using synthetic datasets to train a classifier in the context of weather
classification and provided a synthetic dataset validated on the real-world Berkeley Deep-
Drive [26]. The proposed dataset was also hybrid in nature as synthetic images from
different camera angles were taken. The weather classification accuracy was derived by
testing classifiers on different real-time datasets, which allowed the persistent problem of
bias in vision datasets to be tackled. The study proves that a persistent visual fidelity is
important in generating realistic datasets for computer vision-based datasets. Furthermore,
with advent of computer graphics it will be possible to achieve advanced photorealism
in the generated datasets game engines such as Unity and Unreal are embedding new
visualization techniques to further enable data scientists to generate accurate synthetic data
for vision based tasks.
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