75 research outputs found

    First insights into structure-function relationships of alkylglycerol monooxygenase

    Get PDF
    Alkylglycerol monooxygenase is a tetrahydrobiopterin-dependent enzyme that cleaves the O-alkyl-bond of alkylglycerols. It is an exceptionally unstable, hydrophobic membrane protein which has never been purified in active form. Recently, we were able to identify the sequence of alkylglycerol monooxygenase. TMEM195, the gene coding for alkylglycerol monooxygenase, belongs to the fatty acid hydroxylases, a family of integral membrane enzymes which have an 8-histidine motif crucial for catalysis. Mutation of each of these residues resulted in a complete loss of activity. We now extended the mutational analysis to another 25 residues and identified three further residues conserved throughout all members of the fatty acid hydroxylases which are essential for alkylglycerol monooxygenase activity. Furthermore, mutation of a specific glutamate resulted in an 18-fold decreased affinity of the protein to tetrahydrobiopterin, strongly indicating a potential important role in cofactor interaction. A glutamate residue in a comparable amino acid surrounding had already been shown to be responsible for tetrahydrobiopterin binding in the aromatic amino acid hydroxylases. Ab initio modelling of the enzyme yielded a structural model for the central part of alkylglycerol monooxygenase where all essential residues identified by mutational analysis are in close spatial vicinity, thereby defining the potential catalytic site of this enzym

    Green tea extract only affects markers of oxidative status postprandially: lasting antioxidant effect of flavonoid-free diet

    Get PDF
    Epidemiological studies suggest that foods rich in flavonoids might reduce the risk of cardiovascular disease and cancer. The objective of the present study was to investigate the effect of green tea extract (GTE) used as a food antioxidant on markers of oxidative status after dietary depletion of flavonoids and catechins. The study was designed as a 2×3 weeks blinded human cross-over intervention study (eight smokers, eight non-smokers) with GTE corresponding to a daily intake of 18·6 mg catechins/d. The GTE was incorporated into meat patties and consumed with a strictly controlled diet otherwise low in flavonoids. GTE intervention increased plasma antioxidant capacity from 1·35 to 1·56 (P<0·02) in postprandially collected plasma, most prominently in smokers. The intervention did not significantly affect markers in fasting blood samples, including plasma or haemoglobin protein oxidation, plasma oxidation lagtime, or activities of the erythrocyte superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase. Neither were fasting plasma triacylglycerol, cholesterol, α-tocopherol, retinol, β-carotene, or ascorbic acid affected by intervention. Urinary 8-oxo-deoxyguanosine excretion was also unaffected. Catechins from the extract were excreted into urine with a half-life of less than 2 h in accordance with the short-term effects on plasma antioxidant capacity. Since no long-term effects of GTE were observed, the study essentially served as a fruit and vegetables depletion study. The overall effect of the 10-week period without dietary fruits and vegetables was a decrease in oxidative damage to DNA, blood proteins, and plasma lipids, concomitantly with marked changes in antioxidative defenc

    Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase

    Get PDF
    Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure–function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis–Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    Fluorescence lifetime distributions of diphenylhexatriene-labeled phosphatidylcholine as a tool for the study of phospholipid-cholesterol interactions.

    Get PDF
    Fluorescence lifetimes of 1-palmitoyl-2-diphenylhexatrienylpro-pionyl-phosphatidylc hol ine in vesicles of palmitoyloleoyl phosphatidylcholine (POPC) (1:300, mol/mol) in the liquid crystalline state were determined by multifrequency phase fluorometry. On the basis of statistic criteria (chi 2red) the measured phase angles and demodulation factors were equally well fitted to unimodal Lorentzian, Gaussian, or uniform lifetime distributions. No improvement in chi 2red could be observed if the experimental data were fitted to bimodal Lorentzian distributions or a double exponential decay. The unimodal Lorentzian lifetime distribution was characterized by a lifetime center of 6.87 ns and a full width at half maximum of 0.57 ns. Increasing amounts of cholesterol in the phospholipid vesicles (0-50 mol% relative to POPC) led to a slight increase of the lifetime center (7.58 ns at 50 mol% sterol) and reduced significantly the distributional width (0.14 ns at 50 mol% sterol). Lifetime distributions of POPC-cholesterol mixtures containing greater than 20 mol% sterol were within the resolution limit and could not be distinguished from monoexponential decays on the basis of chi 2red. Cholesterol stabilizes and rigidifies phospholipid bilayers in the fluid state. Considering its effect on lifetime distributions of fluorescent phospholipids it may also act as a membrane homogenizer

    Structure and dynamics of plasmalogen model membranes containing cholesterol : a deuterium NMR study

    No full text
    Deuterium nuclear magnetic resonance (2H-NMR) was used to investigate the structure and dynamics of the sn-2 hydrocarbon chain of semi-synthetical choline and ethanolamine plasmalogen in bilayers containing 0, 30, and 50 mol% cholesterol. The deuterium NMR spectra of the choline plasmalogen yielded well-resolved quadrupolar splittings which could be assigned to the corresponding hydrocarbon chain deuterons. The sn-2 acyl chain was found to adopt a similar conformation as observed in the corresponding diacyl phospholipid, however, the flexibility at the level of the C-2 methylene segment of the plasmalogen was increased. Deuterium NMR spectra of bilayers composed of the ethanolamine plasmalogen yielded quadrupolar splittings of the C-2 segment much larger than those of the corresponding diacyl lipids, suggesting that the sn-2 chain is oriented perpendicular to the membrane surface at all segments. Cholesterol increased the ordering of the choline plasmalogen acyl chain to the same extent as in diacyl lipid bilayers. T1 relaxation time measurements demonstrated only minor dynamical differences between choline plasmalogen and diacyl lipids in model membranes
    corecore