185 research outputs found

    Social gradient of birthweight in England assessed using the INTERGROWTH-21st gestational age-specific standard.

    Get PDF
    OBJECTIVE: To determine the socioeconomic gradient of birthweights in England with reference to the prescriptive INTERGROWTH-21st Birthweight Standard. DESIGN: National cross-sectional study using data from Hospital Episode Statistics. SETTING: National Health Service in England. PARTICIPANTS: All singleton babies, live born between 34 weeks' gestation and 42 weeks' gestation, between 1 April 2011 and 31 March 2012. MAIN OUTCOME MEASURES: Birthweight distribution of babies with a birthweight of 90th centile, that is, small for gestational age (SGA) or large for gestational age (LGA) using Index of Multiple Deprivation quintiles as a proxy for socioeconomic status. RESULTS: Of 508 230 babies born alive between 1 April 2011 and 31 March 2012, 38 838 (7.6%) were SGA and 81 026 (15.9%) were LGA. Median birthweight was 3405 g, median z-score was 0.25 (SD 1.06). Birthweight z-score demonstrated a social gradient, from 0.26 (SD 1.1) in the most deprived areas to 0.53 (1.0) in the least deprived. Women in the most deprived areas were twice as likely to have SGA babies using the INTERGROWTH-21st chart (OR 1.94; 95% CI 1.87 to 2.01) compared with those in the least deprived areas. If all women had the same rate of SGA equivalent to those living in the least deprived areas, approximately 12 410 (30%) fewer babies would be born SGA in England each year. CONCLUSIONS: This study gives a measure of the social gradient in singleton SGA and LGA babies across England using an international standard of newborn size at birth

    MAP4K3 Is a Component of the TORC1 Signalling Complex that Modulates Cell Growth and Viability in Drosophila melanogaster

    Get PDF
    Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability

    Single-copy nuclear genes resolve the phylogeny of the holometabolous insects

    Get PDF
    Background: Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders. Results: Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles) and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma), a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well known. Conclusion: These findings provide the most complete evolutionary framework for future comparative studies on holometabolous model organisms and contribute strong evidence for the resolution of the 'Strepsiptera problem', a long-standing and hotly debated issue in insect phylogenetics

    Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation?

    Get PDF
    Stress granules (SGs) are membraneless cell compartments formed in response to different stress stimuli, wherein translation factors, mRNAs, RNA-binding proteins (RBPs) and other proteins coalesce together. SGs assembly is crucial for cell survival, since SGs are implicated in the regulation of translation, mRNA storage and stabilization and cell signalling, during stress. One defining feature of SGs is their dynamism, as they are quickly assembled upon stress and then rapidly dispersed after the stress source is no longer present. Recently, SGs dynamics, their components and their functions have begun to be studied in the context of human diseases. Interestingly, the regulated protein self-assembly that mediates SG formation contrasts with the pathological protein aggregation that is a feature of several neurodegenerative diseases. In particular, aberrant protein coalescence is a key feature of polyglutamine (PolyQ) diseases, a group of nine disorders that are caused by an abnormal expansion of PolyQ tract-bearing proteins, which increases the propensity of those proteins to aggregate. Available data concerning the abnormal properties of the mutant PolyQ disease-causing proteins and their involvement in stress response dysregulation strongly suggests an important role for SGs in the pathogenesis of PolyQ disorders. This review aims at discussing the evidence supporting the existence of a link between SGs functionality and PolyQ disorders, by focusing on the biology of SGs and on the way it can be altered in a PolyQ disease context.ALG-01-0145-FEDER-29480, SFRH/BD/133192/2017, SFRH/BD/133192/2017, SFRH/BD/148533/2019info:eu-repo/semantics/publishedVersio

    Consumer–brand identification revisited: An integrative framework of brand identification, customer satisfaction, and price image and their role for brand loyalty and word of mouth

    Get PDF
    Consumer–brand identification has received considerable attraction among scholars and practitioners in recent years. We contribute to previous research by proposing an integrative model that includes consumer–brand identification, customer satisfaction, and price image to investigate the interrelationships among these constructs as well as their effects on brand loyalty and positive word of mouth. To provide general results, we empirically test the model using a sample of 1443 respondents from a representative consumer panel and 10 service/product brands. The results demonstrate that identification, satisfaction, and price image significantly influence both loyalty and word of mouth. Moreover, we find significant interrelationships among the constructs: Identification positively influences both satisfaction and price image, which also increases satisfaction. By disclosing the relative importance of three separate ways of gaining and retaining customers, this study helps managers more appropriately choose the right mix of branding, pricing, and relationship marketing. From an academic point of view, our research is the first to explicitly examine the effects of the concept of identification for price management and to integrate variables from the fields of branding, relationship marketing, and behavioral pricing, which have separately been identified as particularly important determinants of marketing outcomes

    Large-Scale Phylogenetic Analysis of Emerging Infectious Diseases

    Get PDF
    Microorganisms that cause infectious diseases present critical issues of national security, public health, and economic welfare.Β  For example, in recent years, highly pathogenic strains of avian influenza have emerged in Asia, spread through Eastern Europe and threaten to become pandemic. As demonstrated by the coordinated response to Severe Acute Respiratory Syndrome (SARS) and influenza, agents of infectious disease are being addressed via large-scale genomic sequencing.Β  The goal of genomic sequencing projects are to rapidly put large amounts of data in the public domain to accelerate research on disease surveillance, treatment, and prevention. However, our ability to derive information from large comparative genomic datasets lags far behind acquisition.Β  Here we review the computational challenges of comparative genomic analyses, specifically sequence alignment and reconstruction of phylogenetic trees.Β  We present novel analytical results on from two important infectious diseases, Severe Acute Respiratory Syndrome (SARS) and influenza.SARS and influenza have similarities and important differences both as biological and comparative genomic analysis problems.Β  Influenza viruses (Orthymxyoviridae) are RNA based.Β  Current evidence indicates that influenza viruses originate in aquatic birds from wild populations. Influenza has been studied for decades via well-coordinated international efforts.Β  These efforts center on surveillance via antibody characterization of the hemagglutinin (HA) and neuraminidase (N) proteins of the circulating strains to inform vaccine design. However we still do not have a clear understanding of: 1) various transmission pathways such as the role of intermediate hosts such as swine and domestic birds and 2) the key mutation and genomic recombination events that underlie periodic pandemics of influenza.Β  In the past 30 years, sequence data from HA and N loci has become an important data type. In the past year, full genomic data has become prominent.Β  These data present exciting opportunities to address unanswered questions in influenza pandemics.SARS is caused by a previously unrecognized lineage of coronavirus, SARS-CoV, which like influenza has an RNA based genome.Β  Although SARS-CoV is widely believed to have originated in animals there remains disagreement over the candidate animal source that lead to the original outbreak of SARS.Β  In contrast to the long history of the study of influenza, SARS was only recognized in late 2002 and the virus that causes SARS has been documented primarily by genomic sequencing.In the past, most studies of influenza were performed on a limited number of isolates and genes suited to a particular problem.Β  Major goals in science today are to understand emerging diseases in broad geographic, environmental, societal, biological, and genomic contexts. Synthesizing diverse information brought together by various researchers is important to find out what can be done to prevent future outbreaks {JON03}.Β  Thus comprehensive means to organize and analyze large amounts of diverse information are critical.Β  For example, the relationships of isolates and patterns of genomic change observed in large datasets might not be consistent with hypotheses formed on partial data.Β  Moreover when researchers rely on partial datasets, they restrict the range of possible discoveries.Phylogenetics is well suited to the complex task of understanding emerging infectious disease. Phylogenetic analyses can test many hypotheses by comparing diverse isolates collected from various hosts, environments, and points in time and organizing these data into various evolutionary scenarios.Β  The products of a phylogenetic analysis are a graphical tree of ancestor-descendent relationships and an inferred summary of mutations, recombination events, host shifts, geographic, and temporal spread of the viruses.Β  However, this synthesis comes at a price.Β  The cost of computation of phylogenetic analysis expands combinatorially as the number of isolates considered increases. Thus, large datasets like those currently produced are commonly considered intractable.Β  We address this problem with synergistic development of heuristics tree search strategies and parallel computing.Fil: Janies, D.. Ohio State University; Estados UnidosFil: Pol, Diego. Ohio State University; Estados Unidos. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; Argentin

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality
    • …
    corecore