178 research outputs found

    Preconceptional genetic carrier testing and the commercial offer directly-to-consumers

    Get PDF
    Recently, a number of commercial companies are offering preconceptional carrier tests directly-to-consumers. This offer raises a number of concerns and issues above and beyond those encountered with preconceptional tests offered within the traditional health care setting. In order to bring some of these issues to light and to initiate dialogue on this topic, this article discusses the following issues: the current offer of preconceptional carrier tests (until the end of 2010) through online commercial companies; the implications for the informed consent procedure and the need for good information; the need for medical supervision and follow-up; and the appropriate use of existing resources. The article concludes with some reflections about the potential sustainability of the offer of preconceptional carrier tests directly-to-consumers

    Impact of Communicating Familial Risk of Diabetes on Illness Perceptions and Self-Reported Behavioral Outcomes: A randomized controlled trial

    Get PDF
    OBJECTIVE: To assess the potential effectiveness of communicating familial risk of diabetes on illness perceptions and self-reported behavioral outcomes. RESEARCH DESIGN AND METHODS: Individuals with a family history of diabetes were randomized to receive risk information based on familial and general risk factors (n = 59) or general risk factors alone (n = 59). Outcomes were assessed using questionnaires at baseline, 1 week, and 3 months. RESULTS: Compared with individuals receiving general risk information, those receiving familial risk information perceived heredity to be a more important cause of diabetes (P <0.01) at 1-week follow-up, perceived greater control over preventing diabetes (P <0.05), and reported having eaten more healthily (P = 0.01) after 3 months. Behavioral intentions did not differ between the groups. CONCLUSIONS: Communicating familial risk increased personal control and, thus, did not result in fatalism. Although the intervention did not influence intentions to change behavior, there was some evidence to suggest it increases healthy behavio

    Using family history information to promote healthy lifestyles and prevent diseases; a discussion of the evidence.

    Get PDF
    BACKGROUND: A family history, reflecting genetic susceptibility as well as shared environmental and behavioral factors, is an important risk factor for common chronic multifactorial diseases such as cardiovascular diseases, type 2 diabetes and many cancers. DISCUSSION: The purpose of the present paper is to discuss the evidence for the use of family history as a tool for primary prevention of common chronic diseases, in particular for tailored interventions aimed at promoting healthy lifestyles. The following questions are addressed: (1) What is the value of family history information as a determinant of personal disease risk?; (2)How can family history information be used to motivate at-risk individuals to adopt and maintain healthy lifestyles in order to prevent disease?; and (3) What additional studies are needed to assess the potential value of family history information as a tool to promote a healthy lifestyle? SUMMARY: In addition to risk assessment, family history information can be used to personalize health messages, which are potentially more effective in promoting healthy lifestyles than standardized health messages. More research is needed on the evidence for the effectiveness of such a tool.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Views of patients and parents of children with genetic disorders on population-based expanded carrier screening

    Get PDF
    Objective Faster and cheaper next generation sequencing technologies have enabled expansion of carrier screening for recessive disorders, potentially facilitating population-based implementation regardless of ancestry or family history. Little is known, however, about the attitudes regarding population-based carrier screening among families with genetic disorders. This study assessed views among parents and patients with a recessive disorder and parents of children with Down syndrome (DS) on expanded carrier screening (ECS). Method In total, 85 patients with various recessive disorders, 110 parents of a child with a recessive disorder and 89 parents of a child with DS participated in an online survey in the Netherlands. Severity of recessive disorders was classified as mild/moderate or severe/profound. Results The majority of the (parents of) patients with a recessive disorder had a positive attitude towards population-based ECS, including screening for their own or their child's disorder. DS parents were significantly less positive towards ECS. Subgroup analyses showed that the severity of the disorder, rather than being a patient or parent, influences the attitudes, beliefs and intention to participate in ECS. Conclusion Our findings have important implications for future implementation initiatives as they demonstrate the different perspectives from people with experiential knowledge with genetic disorders

    Current practice of first-trimester ultrasound screening for structural fetal anomalies in developed countries

    Get PDF
    Objectives: First-trimester ultrasound screening is increasingly performed to detect fetal anomalies early in pregnancy, aiming to enhance reproductive autonomy for future parents. This study aims to display the current practice of first-trimester ultrasound screening in developed countries. Method: An online survey among 47 prenatal screening experts in developed countries. Results: First-trimester structural anomaly screening is available in 30 of the 33 countries and is mostly offered to all women with generally high uptakes. National protocols are available in 23/30 (76.7%) countries, but the extent of anatomy assessment varies. Monitoring of scan quality occurs in 43.3% of the countries. 23/43 (53.5%) of the respondents considered the quality of first-trimester ultrasound screening unequal in different regions of their country. Conclusions: First-trimester screening for structural fetal anomalies is widely offered in developed countries, but large differences are reported in availability and use of screening protocols, the extent of anatomy assessment, training and experience of sonographers and quality monitoring systems. Consequently, this results in an unequal offer to parents in developed countries, sometimes even within the same country. Furthermore, as offer and execution differ widely, this has to be taken into account when results of screening policies are scientifically published or compared.</p

    Responsible implementation of expanded carrier screening.

    Get PDF
    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.European Journal of Human Genetics advance online publication, 16 March 2016; doi:10.1038/ejhg.2015.271
    corecore