374 research outputs found

    Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    Get PDF
    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings.;To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system.;A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped.;This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density

    Mobicom Poster: Evaluating Location Predictors with Extensive Wi-Fi Mobility Data

    Get PDF
    A fundamental problem in mobile computing and wireless networks is the ability to track and predict the location of mobile devices. An accurate location predictor can significantly improve the performance or reliability of wireless network protocols, the wireless network infrastructure itself, and many applications in pervasive computing. These improvements lead to a better user experience, to a more cost-effective infrastructure, or both. Location prediction has been proposed in many areas of wireless cellular networks as a means of enhancing performance, including better mobility management, improved assignment of cells to location areas, more efficient paging, and call admission control. To the best of our knowledge, no other researchers have evaluated location predictors with extensive mobility data from real users. In this poster we compare the most significant domain-independent predictors using a large set of user mobility data collected at Dartmouth College. In this data set, we recorded for two years the sequence of wireless cells (Wi-Fi access points) frequented by more than 6000 users. We found that the simple Markov predictors performed as well or better than the more complicated LZ predictors, with smaller data structures

    Evaluating Next Cell Predictors with Extensive Wi-Fi Mobility Data

    Get PDF
    Location is an important feature for many applications, and wireless networks can better serve their clients by anticipating client mobility. As a result, many location predictors have been proposed in the literature, though few have been evaluated with empirical evidence. This paper reports on the results of the first extensive empirical evaluation of location predictors, using a two-year trace of the mobility patterns of over 6,000 users on Dartmouth\u27s campus-wide Wi-Fi wireless network. The surprising results provide critical evidence for anyone designing or using mobility predictors. \par We implemented and compared the prediction accuracy of several location predictors drawn from four major families of domain-independent predictors, namely Markov-based, compression-based, PPM, and SPM predictors. We found that low-order Markov predictors performed as well or better than the more complex and more space-consuming compression-based predictors

    Role of microphysical parameterizations with droplet relative dispersion in IAP AGCM 4.1

    Get PDF
    Previous studies have shown that accurate descriptions of the cloud droplet effective radius (R (e)) and the autoconversion process of cloud droplets to raindrops (A (r)) can effectively improve simulated clouds and surface precipitation, and reduce the uncertainty of aerosol indirect effects in GCMs. In this paper, we implement cloud microphysical schemes including two-moment A (r) and R (e) considering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics's atmospheric GCM (IAP AGCM 4.1), which is the atmospheric component of the Chinese Academy of Sciences' Earth System Model. Analysis of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave and longwave cloud radiative forcings, as compared to the standard scheme, in IAP AGCM 4.1. The new schemes also effectively enhance the large-scale precipitation, especially over low latitudes, although the influences of total precipitation are insignificant for different schemes. Further studies show that similar results can be found with the Community Atmosphere Model, version 5.1

    Inversion of Different Cultivated Soil Types’ Salinity Using Hyperspectral Data and Machine Learning

    Get PDF
    Soil salinization is one of the main causes of global desertification and soil degradation. Although previous studies have investigated the hyperspectral inversion of soil salinity using machine learning, only a few have been based on soil types. Moreover, agricultural fields can be improved based on the accurate estimation of the soil salinity, according to the soil type. We collected field data relating to six salinized soils, Haplic Solonchaks (HSK), Stagnic Solonchaks (SSK), Calcic Sonlonchaks (CSK), Fluvic Solonchaks (FSK), Haplic Sonlontzs (HSN), and Takyr Solonetzs (TSN), in the Hetao Plain of the upper reaches of the Yellow River, and measured the in situ hyperspectral, pH, and electrical conductivity (EC) values of a total of 231 soil samples. The two-dimensional spectral index, topographic factors, climate factors, and soil texture were considered. Several models were used for the inversion of the saline soil types: partial least squares regression (PLSR), random forest (RF), extremely randomized trees (ERT), and ridge regression (RR). The spectral curves of the six salinized soil types were similar, but their reflectance sizes were different. The degree of salinization did not change according to the spectral reflectance of the soil types, and the related properties were inconsistent. The Pearson’s correlation coefficient (PCC) between the two-dimensional spectral index and the EC was much greater than that between the reflectance and EC in the original band. In the two-dimensional index, the PCC of the HSK-NDI was the largest (0.97), whereas in the original band, the PCC of the SSK400 nm was the largest (0.70). The two-dimensional spectral index (NDI, RI, and DI) and the characteristic bands were the most selected variables in the six salinized soil types, based on the variable projection importance analysis (VIP). The best inversion model for the HSK and FSK was the RF, whereas the best inversion model for the CSK, SSK, HSN, and TSN was the ERT, and the CSK-ERT had the best performance (R2 = 0.99, RMSE = 0.18, and RPIQ = 6.38). This study provides a reference for distinguishing various salinization types using hyperspectral reflectance and provides a foundation for the accurate monitoring of salinized soil via multispectral remote sensing

    Soil Chemical Properties Depending on Fertilization and Management in China: A Meta-Analysis

    Get PDF
    The long-term overuse of fertilizers negatively affects soil chemical properties and health, causing unsustainable agricultural development. Although many studies have focused on the effects of long-term fertilization on soil properties, few comparative and comprehensive studies have been conducted on fertilization management over the past 35 years in China. This meta-analysis (2058 data) evaluated the effects of the fertilizer, climate, crop types, cultivation duration and soil texture on the soil chemical properties of Chinese croplands. NPKM (NPK fertilizers + manure) led to the highest increase in pH (−0.1), soil organic carbon (SOC) (+67%), total nitrogen (TN) (+63%), alkali-hydrolysable nitrogen (AN) (+70%), total phosphorus (TP) (+149%) and available potassium (AK) (+281%) compared to the unfertilized control, while the sole nitrogen fertilizer (N) led to the lowest increase. The SOC (+115%) and TN (+84%) showed the highest increase under the influence of NPKM in an arid region. The increase in the chemical properties was higher in unflooded crops, with the maximum increase in the wheat–maize rotation, compared to rice, under NPKM. The SOC and TN increased faster under the influence of organic fertilizers (manure or straw) compared to mineral fertilization. Fertilizers produced faster effects on the change in the SOC and TN in sandy loam compared to the control. Fertilizers showed the highest and lowest effects on change in pH, organic C to total N ratio (C/N), TP and TK in clay loam with the cultivation duration. NPKM greatly increased the C/N compared to NPK in an arid region by 1.74 times and in wheat by 1.86 times. Reaching the same SOC increase, the lowest TN increase was observed in wheat, and the lowest increase in TP and AK was observed in rice, compared to the other crops. These results suggest that organic fertilizers (manure or straw) play important roles in improving soil fertility and in acidification. NPKM greatly increased the potential for soil C sequestration in wheat and in the arid region. The small increases in TP and TK can increase the SOC in rice and in the humid region. Therefore, considering the crop types and climatic conditions, reduced fertilization and the combination of mineral fertilizers with manure may be the best ways to avoid agricultural soil deterioration and increase soil carbon sequestration

    Comparative simulation analysis based on edemrecurdyn coupling

    Get PDF
    In order to verify the effectiveness of the three-stage potato soil separation device, a comparative simulation should be carried out using the EDEM-Recurdyn simulation method. The results showed that the design of the three-stage potato soil separation unit could reduce damage to potato tubers

    Contribution to the genus Filipinolotis Miyatake, 1994 (Coleoptera, Coccinellidae, Sticholotidini)

    Get PDF
    The genus Filipinolotis Miyatake has been reviewed in this study. Descriptions and illustrations of two species (F. latefasciata Miyatake and F. purpuratorotunda Wang, Zhang & Ślipiński, sp. n.) in the Luzon island of the Philippines, are given. The male genitalia of F. latefasciata are described for the first time. A key to known species is also provided
    corecore