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ABSTRACT 

 

Feasibility and Supply Analysis of U.S. Geothermal District 

Heating and Cooling System 

 
Xiaoning He 

 

Geothermal energy is a globally distributed sustainable energy with the 

advantages of a stable base load energy production with a high capacity factor and zero 

SOx, CO, and particulates emissions. It can provide a potential solution to the depletion 

of fossil fuels and air pollution problems. The geothermal district heating and cooling 

system is one of the most common applications of geothermal energy, and consists of 

geothermal wells to provide hot water from a fractured geothermal reservoir, a surface 

energy distribution system for hot water transmission, and heating/cooling facilities to 

provide water and space heating as well as air conditioning for residential and 

commercial buildings. 

To gain wider recognition for the geothermal district heating and cooling (GDHC) 

system, the potential to develop such a system was evaluated in the western United States, 

and in the state of West Virginia. The geothermal resources were categorized into 

identified hydrothermal resources, undiscovered hydrothermal resources, near 

hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir 

characteristics of the first three categories were estimated individually, and their thermal 

potential calculated. A cost model for such a system was developed for technical 

performance and economic analysis at each geothermally active location. A supply curve 

for the system was then developed, establishing the quantity and the cost of potential 

geothermal energy which can be used for the GDHC system. 

A West Virginia University (WVU) case study was performed to compare the 

competiveness of a geothermal energy system to the current steam based system. An 

Aspen Plus model was created to simulate the year-round campus heating and cooling 

scenario. Five cases of varying water flow rates and temperatures were simulated to find 

the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then 

used to derive a levelized cost of heat as a function of the population density at a constant 

geothermal gradient. By use of such functions in West Virginia at a census tract level, the 

most promising census tracts in WV for the development of geothermal district heating 

and cooling systems were mapped. 

This study is unique in that its purpose was to utilize supply analyses for the 

GDHC systems and determine an appropriate economic assessment of the viability and 

sustainability of the systems. It was found that the market energy demand, production 

temperature, and project lifetime have negative effects on the levelized cost, while the 

drilling cost, discount rate, and capital cost have positive effects on the levelized cost by 

sensitivity analysis. Moreover, increasing the energy demand is the most effective way to 

decrease the levelized cost. The derived levelized cost function shows that for EGS based 

systems, the population density has a strong negative effect on the LCOH at any 

geothermal gradient, while the gradient only has a negative effect on the LCOH at a low 

population density. 
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Chapter 1 

The Geothermal Basics 

“It is a well-known fact that the interior portions of the earth are very hot, the 

temperature rising, as observations show, with the approach to the center at the rate of 

approximately 1°C for every hundred feet of depth. The difficulties of sinking shafts and 

placing boilers at depths of twelve thousand feet, corresponding to an increase in 

temperature of about 120°C are not insuperable, and we could certainly avail ourselves 

in this way of the internal heat of the globe. In fact, it would not be necessary to go to any 

depth at all in order to derive energy from the stored terrestrial heat. The superficial 

layers of the earth … are at a temperature sufficiently high to evaporate some extremely 

volatile substances, which we might use in our boilers instead of water.”  

--- Nikola Tesla 

1.1 Earth as a Heat Engine 

As the quote stated, people have been thinking of utilizing geothermal energy for a long 

time. In fact, hot springs have been used by mankind from time immemorial. However, 

the commercialization of geothermal energy did not start until the first success of the 

geothermal power generation in Italy in 1904. Since then, with growing concerns of fossil 

fuels depletion and environment deterioration, geothermal energy has experienced 

dramatic increase in attention. 

During the millions of years of the Earth’s formation, the earth developed a solid inner 

core with a radius of 1,221-kilometers, and a liquid outer core of 2,200-kilometers, 

approximately. The temperature at the edge of the liquid outer core is about 4,000K. 

About 40% of the geothermal energy is from such remnant heat from the Earth’s core 

(Glassley, 2010). The other 60% of the heat is from the radioactive decay of the long-
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lived isotopes of uranium (U
238

, U
235

), thorium (Th
232

) and potassium (K
40

). Heat transfer 

in the earth, dominated by conduction and convection, results in a heterogeneous 

terrestrial heat flow, ranging from 30 mW/m
2
 to more than 150 mW/m

2
. Figure 1.1 shows 

the heat flow map of the continental United States by South Methodist University (SMU) 

Geothermal Lab (Blackwell, et al., 2011). As seen from Figure 1.1, the western region 

has a higher geothermal heat flow than the east region on average.  

 

Figure 1.1: Heat flow map of the conterminous United States by SMU Geothermal 

Laboratory (Blackwell, et al., 2011). 

1.2 Using Geothermal Energy for Heat and Power 

Man has a long history of direct use of geothermal energy, back from when people began 

to use hot springs for baths, to modern geothermal utilizations, such as space heating or 

aquaculture farming. The classic Lindal diagram (Gudmundsson, et al., 1985) shown in 

Figure 1.2 provides a good overview of the geothermal utilizations based on different 

temperature ranges. Conventional power generation technics generally require 

geothermal temperatures greater than 150°C. For a lower temperature range (110 to 

150°C), a binary cycle power generation is often used, which uses a secondary low 

boiling temperature fluid instead of water, to be vaporized and sent through a turbine. 

Geothermal district heating and cooling requires even lower temperatures. Given the 
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ubiquity of the temperature range (20 to 100°C) for other low temperature cascading 

utilizations, direct use has the potential to be applied in most regions on the earth as long 

as there is a sufficient water supply and a large enough energy consumption market. 

 

Figure 1.2: The Lindal diagram shows different geothermal utilizations by temperature 

ranges (Gudmundsson, et al., 1985). 

Figure 1.3 shows a basic geothermal district heating and cooling (GDHC) utilization 

which consists of geothermal injection and production wells for hot water production, a 

surface energy distribution network for hot water distribution, and a surface energy 

conversion system for heating and cooling production. Because of the large amount of 

energy production and the huge capital and maintenance costs of a geothermal heating 

and cooling system, it would not be energetically nor economically efficient for 

individual users. A GDHC system should be carefully coupled with local geothermal 

resource availability and local energy demand to let them match one another, to ensure 

sufficient energy production and profits from selling energy. The monthly heating and 
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cooling demand should be carefully estimated, so that geothermal energy production can 

be controlled, and to prevent fast reservoir cooling. Return water from a GDHC system 

can further be used for cascading utilizations such as snow melting or fish farming whose 

temperature requirements are lower. 

 

Figure 1.3: Schematic layout of a geothermal district heating and cooling system. DWP is 

deep well pump, SDT is storage and degassing tank, CP is circulation pump, PLB is peak 

load boiler, htw is hot water, and C is convention heating (Marcel, 2007).  

The first geothermal power generation device was set up in Italy in 1904. After a century 

of development, the world installed geothermal power generation capacity has exceeded 

10,000 MWe in at least twenty-four countries (Chamorro, et al., 2012). Figure 1.4 shows 

a two-well enhanced geothermal power generation system in hot rocks in a low 

permeability crystalline basement formation. Similar to geothermal district heating and 

cooling, wells are drilled to desired depths to access the rocks which are hot enough. 

With respect to different production temperatures, different power generation technics 

will be applied. The dry steam power plant uses high quality vapor-dominated hot steam 

to go directly through the turbine, which requires a high-temperature geothermal 

reservoir. For a median temperature reservoir with a liquid-dominated production fluid, 

the flash steam power plant is used. A binary power plant is used when the production 



5 

 

temperature is less than 150°C. In case there is an aquifer layer underground and 

sufficient rock permeability, the heated geothermal water can be directly pumped to the 

surface, with return water from the geothermal utilization system re-injected back to the 

reservoir. Otherwise, artificial permeability improvement technologies should be used. 

Massive water fracturing is one of the most commonly used technics, which pumps 

millions of gallons of water into the reservoir to stimulate the rock through hydro-

fracturing or hydro-shearing, and forms pathways that allow water going through the 

reservoir to gain heat. 

 

Figure 1.4: Schematic of a two-well enhanced geothermal power generation system in hot 

rocks in a low permeability crystalline basement formation (Tester, et al., 2006). 
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1.3 Background and Motivation 

The 20th century witnessed some of the greatest technological advancements that affect 

every aspect of people’s daily life. Since then, fossil fuels such as coal, oil and natural 

gas provide people a better living condition with electricity for heating and cooling, fast 

methods of transportations, and various industrial products. The improved living quality 

results in vast increases in energy per capita use; besides, the world population has 

expanded more than three times in the last fifty years, as shown in Figure 1.5. As a result, 

the consumption of fossil fuels has increased significantly, and the depletion problem 

rises. Asif predicted that the number of years to the exhaustion of coal for India, China, 

Russia and U.S. are 315, 83, 1034 and 305 years, respectively (Asif and Muneer, 2007). 

 

Figure 1.5: World average energy consumption per person (×10
9
 J/ppl/year) and 

population growth since 1970, data from (Glassley, 2010). 

Using geothermal energy can efficiently reduce the fossil fuels consumption on the low 

temperature end uses like space heating. As of 2010, the U.S. installed capacity of 
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geothermal direct use reached 12,611 MWth, which produced 56,552 TJ of thermal 

energy in 2010 (Lund, 2010). Annual energy savings amounted to 27 million barrels of 

equivalent oil, and preventing 3.5 million tonnes of carbon and 12.8 million tonnes of 

CO2 being released to the atmosphere, based on the data from Lawrence Livermore 

Laboratory (Kasameyer, 1997).  

Another issue of intensively burning fossil fuels is its harm to the environment. The 

burning residue causes air pollution and vast greenhouse gas emission resulting in the 

greenhouse effect, as evidenced by elevated global temperature, polar ice melting and sea 

level increase (Lashof and Ahuja, 1990). Figure 1.6 shows the CO2 emission from fossil 

fuels (coal, oil and natural gas), corresponding to the increasing global mean temperature 

since 1980 to 2010. 

 

Figure 1.6: CO2 emission from fossil fuels, data from (EIA, 2011) and global mean 

surface temperature, data from (NASA, 2012) 

1.4 World-wide Geothermal Development 

Geothermal direct use has been growing rapidly during the last 15 years. Figure 1.7 

shows the number of installed country and the total installed capacity of geothermal 

direct use around the world. There are 78 countries reported having geothermal direct use 
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installed by the end of 2009, while the number for 1995 is only 28. The worldwide 

installed capacity in 2009 and 1995 is 50,583 MWth and 1,000 MWth, respectively. The 

five countries with the largest installed capacity are the United States, China, Sweden, 

Norway, and Germany. Among the overall installed capacity in 2010, the geothermal 

heat pump accounts for 69.7%, followed by the geothermal space and water heating, 

which is 23.9%, and the geothermal greenhouse heating, which is 3.1% (Lund, et al., 

2010). 

 

Figure 1.7: Number of installed countries and installed capacity of geothermal direct use. 

As of 2012, there are 24 countries reported having geothermal power generation, with a 

total installed capacity about 10,898 MWe, corresponding to 67,246 GWh of electricity 

each year. The installed capacity doubled in the last three decades, and is expected to 

reach 70,000 MWe worldwide by 2050 (Chamorro, et al., 2012), as shown in Figure 1.8. 

The five countries with the largest installed capacity are the United States, Philippines, 

Indonesia, Mexico and Italy. Currently geothermal power generation projects are mainly 

served by hydrothermal resources, and the flash steam power plant dominates the power 

generation technics.  
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Figure 1.8: Installed capacity of the worldwide geothermal power generation since 1950. 

It is expected to reach 70,000 MWe in 2050. 

1.5 Objective and Approach 

This project focuses on the evaluation of the opportunities to develop the GDHC systems 

in the United States from the view of technical and economic feasibility. With the help of 

the GDHC systems, huge amounts of fossil fuels consumption and greenhouse gas 

emissions can be reduced, which will help the United States energy industry restructure 

to a more renewable and sustainable oriented supply system, and to protect the national 

energy security. 

To accomplish this, In Chapter 2 the hydrothermal geothermal resources and near 

hydrothermal EGS in the western U.S. were identified, and their thermal potential 

estimated. Then a techno-economic model to calculate the levelized cost of heat (LCOH) 

of the GDHC system was developed. By estimating the LCOH for each of the identified 

resource, a supply curve of the GDHC application was finally developed, which is able to 

answer the questions such as how much geothermal energy can be potentially used for the 

GDHC systems in the United States, and where to develop such systems in order to get 

the minimum LCOH. In Chapter 3 a West Virginia University (WVU) case study on 

GDHC application based on the deep EGS resource was conducted to evaluate potential 

economic advantages in comparison with the current steam system. A series of LCOH 
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equations which are as functions of population density at different geothermal gradients 

were then derived. Finally, the LCOH was calculated for every census tract in West 

Virginia to develop the GDHC system. Those census tracts with the lowest LCOH were 

found and mapped by ArcGIS. Chapter 4 briefly provides conclusions and recommends 

future works for the development and research of the GDHC application. 
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Chapter 2 

Supply Analysis of Geothermal District 

Heating and Cooling Systems 

2.1 Introduction 

Supply analysis reveals the relation between a given good’s price and its quantity in 

modern market. The supply curve is the most straightforward way to illustrate the supply 

analysis results. A typical supply curve usually has a positive slope, which means that at 

a low price, only the most efficient producers can make a profit, with limited product 

amount; at a high price, even the high cost producer can also make a profit, and hence 

large amount of products available. 

Supply analysis has been accepted as a powerful tool in both traditional and renewable 

energy research for estimation of energy reserves, as well as for the cost of energy, e.g. 

Analysis on the oil market by Blair (Blair, 1978) and Kilian (Kilian, 2006), coal market 

by Gordon (Gordon, 1975), and solar energy market by Cook, et al. (Cook, et al., 2010). 

Supply analysis has also been used for geothermal energy research since the 1990s. There 

are two main applications of geothermal energy, which is power generation and direct use, 

however, all the supply analysis have only been concentrating on the geothermal power 

generation, e.g. (Petty, et al., 1992 and 2007) and (Augustine, et al., 2010). In the light of 

the foregoing, the first aspect of this study is the supply analysis of a nationwide 

geothermal direct use. It answers the following two questions: How much geothermal 

energy is available for the geothermal district heating and cooling application and how 

much it costs to deliver the energy in respect of the first question. The other aspect of this 

study is to map the paired energy potential and energy cost, and it answers another 

question: where to develop the geothermal district heating and cooling application first 

with concerns of the energy adequateness and economical costs. Answers to these 
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questions help to develop a comprehensive national renewable energy strategy and 

framework with respect to geothermal energy and also address the economic 

environmental balance issue. 

2.2 Levelized Cost of Heat 

Traditional supply curve consists of two parts: the x-axis represents the accumulated 

quantity of the good in the market and the y-axis represents the price at which can make a 

profit. An example is shown in Figure 2.1, which shows the wind power’s supply curve 

in Zhangbei area, China. In this study the quantity of the good is simply the geothermal 

energy potential, which is directly related to the geothermal resources’ quality and 

quantity. However, how to define the “price” that can make a profit is more complicated. 

The basic economics tells that the selling price should at least cover all the investments in 

the producing process. The geothermal energy is an extremely capital-intensive industry 

with three capital investment phases: 1) Exploration and drilling of test and production 

wells; 2) Construction of surface energy conversion facilities; and 3) Discounted future 

re-drilling and well simulation (Tester, et al., 2006). How to find the optimum price 

which is related to both the one-time upfront investments and the various day-to-day 

operation costs over the project’s lifetime is very important. The geothermal energy 

industry is also very location-sensitive. The quality of the resources has a significant 

impact on the wells drilling and completion costs, which attribute up to 60% of the 

overall capital investments (Sanyal, 2004). Even for the resources with similar geologic 

settings, differences in energy demand and energy market structure also impact. 

Therefore, the levelized cost of heat (LCOH) is used in this study, which is a convenient 

summary measure of the competitiveness of one energy generating technology. It 

represents the present value of the overall cost to build and operate an energy generating 

plant over the project’s lifetime. 
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Figure 2.1: Zhangbei area, China available wind power supply, plotted based on data 

from Kline, et al., 2008. 

The LCOH is related to the system’s capital cost, fuel cost, fixed and variable operation 

and maintenance (O&M) cost, financing cost, and so on. For one kind of energy resource, 

the specific technology used converting it to power or heat and the regional 

characteristics such as the resource availability and energy consumption market are also 

key elements for the LCOH calculation. Figure 2.2 shows the predicted levelized cost of 

electricity (LCOE) and their cost breakdown for different technologies in the U.S. in 

2019. It shows that for electricity generation, geothermal energy is very competitive to 

other forms of energy resources because of its advantages of the high capacity rate, long 

project lifetimes with a stable base load output and near zero fuel cost. 
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Figure 2.2: Predicted levelized cost of electricity and cost breakdown for new generation 

resources in 2019, based on data from Annual Energy Outlook, 2014, U.S. EIA. 

In this study, an Excel-based calculation model was developed to calculate LCOH of the 

GDHC system. The model can provide a comprehensive simulation of the proposed 

system, and help the designers, engineers, operators and utilities with extensive technical 

and economic information about the GDHC system. The model uses a matrix of about 20 

user-defined variables to cover every aspect of the system. In general categories, the 

variables account for geothermal resource characteristics, wells exploration and 

production, market configuration, heating/cooling facilities, and economic settings. The 

output results provide a year-round monitoring of the geothermal production temperature, 

flow rate, and the overall energy production, as well as economic analysis throughout the 

project’s lifetime. 

2.3 Previous Studies on Geothermal Supply Analysis 

Previous work on supply analysis of geothermal energy have only been focused on 

geothermal power generation, e.g. Petty, et al., 1992 and 2007, and Augustine, et al., 

2010. As time goes on, more geothermal exploration activities, as well as more advanced 

energy utilization technology have been developed. Thus, the latter report has covered 

more categories of geothermal resources than the former ones with lower estimated cost. 

0

50

100

150

200

250

L
C

O
E

 (
$

/M
W

h
e)

 

Capital Cost O&M Fuel Transmission



15 

 

A summary including the estimated power potential and their corresponding levelized 

cost of electricity from these reports is listed in Table 2.1. 

Table 2.1: Summary of geothermal power potential and levelized cost of electricity from 

previous supply analysis studies. 

Source Category 
Potential, 

GWe 
Region 

Cost 

Model 

Potential, 

GWe less than 

$ 50/MWh 

Petty, et 

al., 1992 

Identified 

hydrothermal 
27.4 

Western U.S. IM-GEO 

12.5 

Undiscovered 

hydrothermal 
22.6 9.5 

Petty and 

Porro, 

2007 

Hydrothermal 27.6 Western U.S. 

& 

Southwestern 

U.S. for 

coproduced 

GETEM 

<10.0 

EGS 54.7 0 

Co-produced 

with oil, gas 
44.0 21.0 

Augustine, 

et al., 2010 

Identified 

hydrothermal 
6.4 

Western U.S. 

& entire 

lower 48 

states for 

EGS 

GETEM 

& 

@Risk 

3.0 

Undiscovered 

hydrothermal 
30.0 0 

Near-hydro 

EGS 
7.0 2.5 

Deep EGS 15,908.0 0 

 

The first report was published in 1992, in which Petty et al. reviewed 54 hydrothermal 

resources in the western U.S. The report focused only on eleven western states, which 

were Arizona, California, Colorado, Hawaii, Idaho, Nevada, New Mexico, Montana, 

Oregon, Utah, and Washington. The report identified 45 hydrothermal resources in these 

states where surface manifestation such as hot springs or geysers or if a well had been 

drilled into the resources were observed and other 9 unities representing the undiscovered 
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resources in the nine states, except Arizona and Hawaii. The report also cut off the 

database with a minimum reservoir temperature at 110°C, because at that time the coolest 

geothermal water used for power generation was 108°C, by a power plant in Amedee, 

California. The characteristics of the geothermal resources were mainly from two sources: 

the U.S. Geologic Survey (USGS) Circular 790 (Muffler and Guffanti, 1979), and the 

Bonneville Power Authority study (Bloomquist, 1985). Three parameters were selected to 

define a geothermal resource, which were the reservoir temperature, reservoir depth, and 

flow rate. Due to the extreme lack of exploration activities and data, power potential and 

the corresponding levelized cost were roughly estimated. Extensive personal knowledge 

and judgments from the investigation team and consulted experts had been used. Cost 

estimations were made with the use of IM-GEO, a cost model specifically developed for 

the geothermal power generation by a team led by Dan Entingh (Entingh, et al., 1988) in 

late 1980s. As a result, the report estimated 27.4 GWe from the identified hydrothermal 

resources, and 22.6 GWe from the undiscovered hydrothermal resources. The majority of 

the identified resources could provide electricity at a cost less than $ 120/MWh. About 

half of the undiscovered ones could provide electricity at a cost less than $ 75/MWh. The 

cost estimation only examined the economic feasibility of the resource itself. Political, 

environmental, regulatory and market constrains were not considered in this report. 

In 2007, Petty and Porro updated the supply analysis of geothermal power generation 

with expanded geothermal resources and a new cost model the – Geothermal Electric 

Technology Evaluation Model (GETEM), developed by Princeton Energy Resources 

International (Petty and Porro, 2007). GETEM is an Excel-based techno-economic 

analysis tool for computing costs for a set of user-defined input variables that address 

four dozen project criteria based on a baseline profile of the input values that reflect 

current technical capabilities and economic conditions (Entingh, 2006). The updated 

supply analysis covered not only the hydrothermal resources, but also the enhanced 

geothermal systems (EGS) and the geothermal fluid coproduced in oil and gas industry. 

The updated report also expanded its focus to 12 more southeastern states (mainly for 

coproduced geothermal system), which were Alabama, Arkansas, Georgia, Kansas, 

Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, 

and Virginia. The study extensively reviewed and investigated the geothermal resources 
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based on more than 10 reports from the USGS (Priest, et al., 2000), state geologic survey 

office (Garside, 1994), SMU Geothermal Lab (Blackwell and Richards, 2004), and 

private firms such as GeothermEx (Klein, et al., 2004), and identified more than 220 

hydrothermal and convective EGS sites. By collecting the physical characteristics of the 

resources, and with the advantage of the GETEM, the updated supply analysis estimated 

the levelized cost of electricity based on resource types (Hydrothermal or EGS) and 

utilization technologies (binary or flash). Methods for potential estimation were similar to 

the previous one, by assuming a series of constant conversion rate to get the power 

potential from the original heat stored in the reservoir, which is called the Volume 

Method. As a result, they estimated 27.6 GWe from the hydrothermal resources, 44 GWe 

from the coproduced resources, and 54.7 GWe from the EGS resources. The levelized 

cost of electricity was estimated at least $ 40/MWh, and that of over 90% of the resources 

were less than $ 80/MWh. Another improvement comparing to the previous supply 

analysis was that they introduced the impacts of geothermal industry’s R&D and learning 

ability. The updated report not only gave economic analysis based on year 2007, but also 

predicted the cost of energy in year 2015 and year 2030 with advanced technology. 

In 2010, Augustine, et al. reviewed any possible available reports and papers to estimate 

the geothermal power potential, in particular, the most recent national geothermal 

assessment conducted by USGS (Williams, et al., 2008) and the Future of Geothermal 

Energy report from Massachusetts Institute of Technology to characterize the EGS 

resources (Tester, et al., 2006). The study identified 241 hydrothermal resources, and 

gave reasonable guesses for the undiscovered resources, and it for the first time covered 

all the continental U.S. (48 states) for the EGS resources. Methods for power potential 

and cost of energy estimation remained similar with the former studies. The most 

significant improvement was that more effort had been focused to predict the cost 

decrease due to different levels of funding. The study adopted a possible data range for 

each system’s technology performance metric from the updated geothermal technical risk 

assessment (Young, et al., 2010), and gave probabilistic results of the power potential as 

well as the LCOE. As a result, Augustine et al. estimated 36.4 GWe from the 

hydrothermal resources, and 15,915 GWe from the EGS resources, of which 7 GWe is 

near hydrothermal EGS. Estimation of EGS resources covered much larger area than any 
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other study, with 48 states from underground 3 km to 10 km, while Petty and Porro, 2007 

only covered eleven western states from 3 km to 6 km. The levelized cost of electricity 

was estimated at least $ 30/MWh, and that of the most of the undiscovered hydrothermal 

resources were less than $ 100/MWh. Developments for the most of the EGS resources 

were predicted to be not economically feasible. 

Besides the above mentioned cost models IM-GEO, and GETEM (continuing being 

updated by National Renewable Energy Laboratory, latest version is August 2012 Beta), 

there have been several other models developed by national laboratories or universities 

for the same purpose, such as the System Advisor Model (Gilman and Bobos, 2012), and 

the Cost of Renewable Energy Spreadsheet Tool (Gifford and Grace, 2011) from U.S. 

National Renewable Energy Laboratory, the HEATMAP
©

 from the Washington State 

University Energy Program and the software for direct use applications from Geo-Heat 

Center, Oregon Institute of Technology. However, none of these cost models consider 

reservoir characteristics impacts on the energy cost except GETEM, which was 

specifically designed for geothermal power generation. Therefore, a new cost model 

comprehensively considering the reservoir characteristics and the surface utilities for 

geothermal direct use is in need, and is developed in the present study. 

No study is being conducted on the supply analysis of other geothermal applications 

currently. There are case studies based on specific GDHC or GDH systems, e.g. He and 

Anderson’s case study on West Virginia University (He and Anderson, 2012), Erdogmus, 

et al. and Yildirim, et al.’s studies on Izmir Institute of Technology (Erdogmus, et al., 

2006), (Yildirim, et al., 2006), and Lei and Valdimarsson’s case study on the district 

heating system in Tianjing area, China (Lei and Valdimarsson, 2009), but lack of a 

national supply characterization of such application. This study focuses on the approach 

to characterize the supply curve of geothermal district heating and cooling systems in the 

United States. In this project, geothermal resources were categorized; resources 

characteristics were identified; resources’ thermal potential and corresponding cost of 

energy were estimated; finally, the supply curve was generated. Though focusing on 

different types of utilization, the supply analysis of geothermal power generation gives 

reasonable assumptions on the market settings and provides inspiring methods for 
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reservoir characterization. Some of them were adopted in this study for the supply 

analysis of geothermal district heating and cooling. The innovation of this study is to 

expand the supply analysis into the GDHC application, and for the first time to include 

energy market in the geothermal research. 

2.4 Reservoir Characterization and Potential Estimation 

Figure 2.3 shows the flow diagram to develop the supply curve in this study. The primary 

steps include the resources characterization and cost estimation. The following discusses 

how geothermal energy is categorized, how the reservoir is characterized and how the 

potential is estimated for each category of the resources. 

 

Figure 2.3: Flow diagram to develop the supply curve of GDHC application. 

2.4.1 Geothermal Resources Categorization 

For a long time, the geothermal resources were classified by their reservoir temperatures 

into low, intermediate, and high enthalpy resources (Lee, 1996). However, it cannot 

illustrate the significant reservoir differences regarding to the permeability and porosity 

in the geothermal research. In this study, the geothermal resources were categorized by 

the reservoir technology into two kinds, which are the conventional hydrothermal 

resources and the enhanced geothermal systems (EGS). Hydrothermal resources have the 

common ingredients of water (hydro) and heat (thermal). The ground water trapped in 
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porous rocks or the running water along the fractured rock surfaces and faults is heated 

by the hot magma near the earth surface. Some of the hydrothermal resources can be 

observed directly, like the hot springs and the geysers. Others can be accessible by 

drilling wells into the reservoir. Hydrothermal resources were further classified into the 

identified ones and the undiscovered ones. EGS resources are also known as the hot dry 

rock (HDR) resources, which indicate that although hot, these resources lack sufficient 

permeability for energy extraction. Reservoir stimulation technologies are usually used to 

enhance the reservoir permeability for practical applications. EGS resources were further 

classified into the near hydrothermal EGS resources and the deep EGS resources in this 

study. Due to lack of available data for deep EGS resources, the following only discusses 

the first three categories of the geothermal resources. 

2.4.2 Identified Hydrothermal Resources 

Since GDHC shares the same reservoirs with geothermal power generation, the latest 

national assessment of geothermal power potential USGS Fact Sheet 2008–3082 

(Williams, et al., 2008) was consulted. It identified 241 moderate (90 to 150°C) and high 

temperature (greater than 150°C) hydrothermal resources located in thirteen western 

states: Arizona, California, Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, 

Utah, Washington, Wyoming, Alaska, and Hawaii. This study also identified twelve more 

low temperature (less than 90°C) hydrothermal resources because of the versatile design 

temperatures of various heating/cooling systems by consulting other reports such as 

USGS Circular 726 (White and Williams, 1975), USGS Circular 790 (Muffler and 

Guffanti, 1979), and USGS Circular 892 (Reed, 1982). The reservoir temperature and 

depth data used in the study were from in situ measurements in exploration and 

production wells when available, or from calculation of the chemical geothermometers. 

Chemical geothermometers are based on the concept that chemical or isotopic 

constituents in the water are established at higher temperatures, but will persist when the 

water cools as it flows to the surface (Karingithi, 2009). Equation 2.1 shows the equation 

of K-Mg chemical geothermometer used by the USGS assessment (Giggenbach, et al., 

1988), where TR is the reservoir temperature, and cK and cMg are the molar concentration 
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of the potassium and magnesium in the production water. The reservoirs’ temperatures 

and depths data were retrieved from the USGS Energy Data Finder. 
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Estimation of intensive properties such as temperature is usually easier than that of 

extensive properties such as flow rate. Without actual wells drilled, it is not possible to 

give an estimate. The method to determine each reservoir’s mass flow rate in this study 

was derived from the Volume Method, as shown in Equation 2.2. The Volume Method 

was used in the past USGS assessments for geothermal power potential (Nathenson, 

1975), (Muffler and Cataldi, 1978), (Muffler, 1979), (Lovekin, 2004), and (Williams, 

2004). Equation 2.2 illustrates the process by which thermal energy stored underground is 

converted to electricity production: 
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In this equation, t is the lifetime of the project (typically assumed 30 years); for each 

reservoir,    is the volumetric specific heat of the reservoir rock; V is the volume of the 

reservoir; TR is the reservoir temperature; T0 and s0 is the temperature and the entropy per 

unit mass of water at reference state; mWH is the overall mass of production water, sWH is 

the entropy per unit mass of water at the well head; Rg represents the fracture of heat 

recovered from the rock; and    represents the overall utilization efficiency from exergy 

to electricity. It is assumed that for an identified hydrothermal reservoir, mWH obtained at 

the well head during the lifetime depends only on the volume of the reservoir V. With 

larger reservoir volume, the fractures in the reservoir are larger, allowing more flow rate 

of water going through the reservoir. Thus, for any reservoir with temperature TR given, 

the power potential  ̇  depends only on the mass of water mWH. The Volume Method 

illustrates the theoretical basis of how the potential is calculated in the cost model 

GETEM. Equation 2.3 was used in this study to find the mass flow rate by GETEM, with 
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power potential and reservoir temperature data retrieved from the USGS Energy Data 

Finder for each resource: 

t
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t

m
m ReWH

R
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      (2.3) 

The thermal potential  ̇ was calculated by Equation 2.4 for each resource by assuming 

the return temperature Tr at 40°C. 

)( rRwaterR TTCmQ        (2.4) 

2.4.3 Undiscovered Hydrothermal Resources 

Due to uncertainties of locations of the undiscovered hydrothermal resources, there is no 

way to estimate them one by one. This study used an analogous method as in the 

geothermal power generation supply analysis, as shown in Equation 2.5. The preferred 

geologic conditions or manifestations of undiscovered hydrothermal resources are the 

same with those of the identified hydrothermal resources. For example, from the studies 

of the known geothermal systems, young felsic magmatism has a strong spatial 

correlation with geothermal energy (Smith and Shaw, 1979); higher underground heat 

flow is usually relevant to a larger possibility of geothermal reservoir occurrence; all the 

quaternary faults have a strong statistical significance for the correlation within 4 km 

distance of geothermal occurrences (Williams and DeAngelo, 2008). Therefore, it is safe 

to use the spatial correlations of such preferred geologic factors that facilitate the 

formation of geothermal resources to estimate undiscovered resources. The favorability 

factor α, is the statistical integrated strength result of the preferred factors, representing 

the possibility of the occurrence of hydrothermal resources. The thermal potential of the 

undiscovered hydrothermal   ̇  in one region is α times of that of the identified 

hydrothermal resources  ̇ in the same region. Such indicator favorability theory has also 

been used to estimate undiscovered resources in other industries such as mineral (Pan, 

1993) and petroleum industry(Gao, et al., 2000). 

QQ  '        (2.5) 
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In the latest USGS geothermal assessment, Williams, et al. investigated 5 evidence layers 

of heat flow, quaternary magmatism, quaternary faulting, seismicity, and tectonic stress 

(Williams, et al., 2009) to estimate the favorability factors of undiscovered hydrothermal 

resources in each state, as shown in Figure 2.4. The favorability factor for each state in 

this study was calculated to be the area average favorability factor, as shown in Equation 

2.6, where i indicates each of the region with its unique favorability factor in the target 

state, and A is the region area. 

 

Figure 2.4: The favorability factor map of undiscovered hydrothermal resources in the 

western U.S. A warmer color indicates a higher probability to find the hydrothermal 

resources (Williams, et al., 2009). 
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This study assumed the same reservoirs’ characteristics of all the undiscovered resources 

in the same state. And the reservoirs’ characteristics (depth, temperature, and flow rate) 

were assumed more similar to those of the larger identified resources with larger thermal 

potential than the smaller ones. The reservoirs’ characteristics (depth, temperature, and 

flow rate) were estimated by calculating the mean-potential-weighted average of each of 

these parameters from the identified hydrothermal sites in each state, as shown in 

Equation 2.7 to 2.10. 

 iii QQ  /        (2.7) 

  )(' iRiR dd        (2.8) 

  )( iiRR TT        (2.9) 

  )(' iRiR mm        (2.10) 

Where   
    

   ̇ 
  is the depth, temperature, and flow rate of the undiscovered 

resources,    is the potential weighted factor,          ̇    ̇  is the depth, temperature, 

flow rate, and thermal potential of the identified resources in the same state. 

2.4.4 Near Hydrothermal EGS Resources 

Reservoir temperature and mass flow rate are the most important factors when 

determining the economics of a geothermal resource. The near hydrothermal EGS is 

defined as the geothermal resource around the hydrothermal site but lack sufficient 

permeability to let water through. Comparing to the deep EGS, the near hydrothermal 

EGS has a higher reservoir temperature at a shallower depth. So it is one kind of the least 

expensive EGS resource, and should be exploited first. Recently the U.S. Department of 

Energy and Ormat Technologies, Inc. announced the first EGS power plant connected to 

the commercial electricity grid, which is operating based on a near hydrothermal EGS 

resource, and is producing 1.7 MWe of electricity. 

There has not been a formal assessment of near hydrothermal EGS resources until now. 

Estimation of their thermal potential is preliminary and based on assumptions. Based on 

the definition of the resource, the reservoir temperature of the near hydrothermal EGS is 
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the same as that of the hydrothermal resource being surrounded. Since thermal potential 

is only determined by the reservoir temperature and the mass flow rate, as shown in 

Equation 2.4, with temperatures being the same, the mass flow rate is the only one to 

distinguish the near hydrothermal EGS from the hydrothermal resources. Thus, it was 

assumed in this study that thermal potential of each near hydrothermal EGS  ̇     is the 

thermal potential difference between the mean and the high-end estimation of its 

corresponding hydrothermal resources, as shown in Equation 2.11: 

QpercentileQQnear
  )95(      (2.11) 

As for estimation of the reservoir mass flow rate, Darcy’s Law describes the flow rate 

through a porous medium is related to the permeability, the viscosity, the pressure 

gradient, and the drainage cross section. Although water viscosity can be determined 

easily in this case, the remaining parameters are dependents on the specific reservoir and 

of the hydraulic fracturing process technic. Therefore, estimation of the flow rate of an 

EGS is very site specific. Exploration drilling and in-situ well logging must be conducted. 

Without the exploration data, McVeigh assumed the mass flow rate as 54 kg/s based on 

the current hydraulic fracture technology (McVeigh, et al., 2007). Augustine assumed the 

flow rate as 30 kg/s and 60 kg/s for the current and improved technology scenario 

(Augustine, et al., 2010). In this study, for near hydrothermal EGS the mass flow rate was 

assumed to be 40 kg/s, 60 kg/s, and 80 kg/s. Calculations related to near hydrothermal 

EGS have considered these three different levels of production rates to provide a 

comprehensive view of such resources. For calculations based on other flow rates, one 

can interpret the results by assuming a linear relation in the 40 to 60 kg/s or 60 to 80 kg/s 

region. 

2.4.5 Deep EGS Resources 

Conventional hydrothermal resources usually exist at depth 3 km or less. The near 

hydrothermal EGS can be considered as the extensions of the hydrothermal resources, 

and also exist at a shallower depth. Deep EGS resources are the geothermal resources 

deeper than 3 km, with dry and impermeable rocks. Artificial permeability increasing 
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technologies like hydraulic fracturing are needed to reach the economic production rate. 

Because of the nature of the EGS resources, their thermal potential is enormous (Mock, et 

al., 1997). The latest systematic assessment of the U.S. EGS resources is the MIT report 

(Tester, et al., 2006). It used a series of temperature-at-depth maps developed by the 

SMU Geothermal Lab, from 3.5 km to 10 km, to estimate the EGS potential with the 

above mentioned Volume Method. Figure 2.5 shows one of the temperature maps of the 

continental U.S. at depth 4.5 km. The MIT report estimated 13,267,370×10
18

 Joules of 

potential from deep EGS, which is approximately 132,673 times of the U.S. annual 

energy consumption, with extremely high levelized cost. Therefore, another trial to 

estimate potential of the EGS is not recommended. Instead, this study conducted a 

techno-economic case study of the EGS based GDHC system at WVU campus. Details 

are discussed in Chapter 3. 

 

Figure 2.5: Map of underground temperature at 4.5 km of the continental U.S (Tester, et 

al., 2006). 
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2.5 Energy Market Characterization 

The demand and supply is the most fundamental basics of modern market. A careful 

market research is very essential for the success of any product, including renewable 

energy. Figure 2.6 shows the sharp decrease of annual U.S. crude oil imports 

corresponding to the rapid increase in renewable energy consumption. Based on the 

preliminary research, market demand impact on the economics of a GDHC project is 

much stronger than that on the economics of a geothermal power generation project. It is 

because the GDHC system is very location seneitive: geothermal heating and cooling 

must be consumed at the same location where it is produced, or the severe energy loss 

during the long hot water distribution will very much corrode the advantage of the low 

energy cost. However, the geothermal power plant can operate at a remote area, while the 

electricity is still able to be transferred thousands of miles away efficiently. This is why 

the previous geothermal power supply analysis is “not constrained by the potential 

market” (Petty, et al., 1992). But in this study, the size of the energy market is a crucial 

factor. Since the supply analysis is based on a site-by-site thermal potential and cost 

estimation, the energy market demand was also estimated site-by-site. 

 

Figure 2.6: Comparison of annual U.S. crude oil imports and renewable energy 

consumption from 2000 to 2014, based on data from U.S. EIA. 
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2.5.1 Barriers to the GDHC Development 

Bloomquist and Lund identified some barriers to the development of geothermal district 

heating system from a survey based on 271 communities, among which only one 

community responded with interests (Bloomquist and Lund, 2000). For example, local 

authorities’ unawareness of the geothermal energy benefits and local leaders’ lack of the 

necessary knowledge to develop the system have shown to be detrimental to the 

expansion of geothermal energy. Thorsteinsson further studied 21 operating geothermal 

district heating systems and concluded the barriers into three categories: technical 

feasibility – most of the high quality hydrothermal resources have been developed into 

large scale power generation systems, while the technology to extract the huge EGS 

resources is immature; economic feasibility – the low cost of alternative energy forms 

such as natural gas and oil; social/political feasibility – the public and the leaders have 

inadequate knowledge of geothermal energy, and the geothermal research is severely 

underfunded (Thorsteinsson, 2008). 

People tend to accept new things gradually. For example, the world’s largest geothermal 

system – Reykjavik geothermal district heating system in Iceland, took nearly a century 

to develop from serving one house at the beginning to providing 61% of the total 

population of Iceland with hot water (Gunnlaugsson, 2008). One important assumption in 

this study was that, unlike the above situation, people would completely adopt 

geothermal energy as their primary heating and cooling source as soon as the GDHC 

system is built. No simulations were included to describe people’s attitude of unfamiliar 

with geothermal energy to liking geothermal energy. Studying such expanding process of 

a renewable energy system is beyond the scope of this project. A good suggestion for 

future work is to add another system metric to represent the portion of people willing to 

use geothermal energy in the target area. A good example is explained in Labay and 

Kinnear’s research to explore cunstomers’ decision process in the adoption of solar 

energy (Labay and Kinnear, 1981). But in this study, it was simply assumed that the 

capacity of a GDHC system should meet the overall heating and cooling demands of the 

whole population. 
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2.5.2 Energy Demand Estimation 

This study aims to cover both the residential and the commercial buildings’ heating and 

cooling demands. Since the energy consumption very much depends on the climate and 

the day-to-day ambient temperature, this study focuses to find the maximum heating and 

cooling demand, so that it can be used as the design capacity of the surface energy 

conversion facilities. Figure 2.7 shows the flow diagram of the energy demand estimation 

process. 

 

Figure 2.7: Flow diagram to estimate the energy demand of the target location. 

This study estimated the overall energy demand with the overall population and the 

energy consumption intensity per capita for residential section, and with the overall 

building number and the energy consumption intensity per building for commercial 

section. The county and census tract based population data was found from the 

Topologically Integrated Geographic Encoding and Referencing database (TIGER) from 

U.S. Census Bureau. The commercial building number was found from the latest 

Commercial Buildings Energy Consumption Survey (CBECS) by U.S. EIA in 2003. The 

U.S. EIA estimates the consumptions of residential household’s end-uses by the climate 

regions. Their heating and cooling intensities for different regions are shown in Table 2.2. 
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The CBECS estimates the consumptions of commercial building’s end-uses by the census 

regions. Their heating and cooling intensities are shown in Table 2.3. 

Table 2.2: Residential buildings heating/cooling consumptions (MMBtu/household) by 

U.S. climate regions in 2009. 

Climate Region Space Heating, δSH Water Heating, δWH Cooling, δC 

Very Cold/Cold 60.5 18.3 2.0 

Mixed-Humid 37.8 16.2 6.5 

Mixed-Dry/Hot-Dry 18.2 15.3 8.7 

Hot-Humid 11.9 11.7 14.5 

Marine 26.4 14.5 1.2 

U.S. Climate    

Region Map 

 

 

Table 2.3: Commercial buildings heating/cooling consumption (trillion Btu) of the 

mountain and the pacific region, in western U.S., 2003. 

Census Region Space Heating, ΔSH Water Heating, ΔWH Cooling, ΔC 

Mountain 167 41 31 

Pacific 131 68 55 

 

This study assumed a trigonometric function to curve-fit the year-round ambient 

temperature. The function of the day-to-day ambient temperature Tab is shown in 

Equation 2.12: 

abMinabMinabMaxab T
n

TTT  )
365

sin()(


   (2.12) 
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The maximum and minimum ambient temperatures for each location were found from the 

National Climatic Data Center database. It was also assumed that days with temperature 

lower than 18.3°C accounted into space heating days, while days with temperature 

greater than 18.3°C accounted into cooling days. The total heating days nH and cooling 

days nC can be calculated by Equation 2.13: 
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Thus, taking the residential part as an example, the peak heating and cooling demands 

were calculated by Equation 2.14 and 2.15, where hh is the household number and ppl is 

the population. The commercial part was estimated with the similar process. 
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Cooling: 
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2.6 LCOH Model Development 

As mentioned in section 2.3, none of the existing cost models can be perfectly 

implemented into this study considering the GDHC system’s feature of energy 

production and consumption balance. This part of the study discusses how to develop the 

cost model for GDHC system and calculates the LCOH. Six categories of parameters 

have been used to characterize the system. They are: 

1) Resource parameters – Geothermal temperature, geothermal gradient, etc. 
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2) Market parameters – Population density, energy intensive, climate data, etc. 

3) Capital parameters – Well drilling and exploration, stimulation cost, heating and 

cooling unit cost, etc. 

4) O&M parameters – Reservoir O&M, surface facility O&M, make-up wells. 

5) Financial parameters – Discount rate, lifetime, capacity factor, etc. 

6) Risk parameters – Possible ranges for the above selected parameters. 

With these parameters, the cost model first accesses the reservoir database to get the 

essential reservoir characteristics, and then calculates target heating/cooling demand; 

based on local energy demand, the cost model defines the wells’ production rate and 

designs the corresponding surface heating and cooling unit, as well as the distribution 

system. Finally, it calculates the levelized cost of energy and annual energy production as 

well as a series of economic parameters such as capital cost, O&M cost, project cash flow 

details, etc. The following part discusses two modules which constitute the cost model, 

namely – surface facility design and economics, and well design and economics. They 

were developed in Excel spreadsheets, with necessary reservoir database and economic 

factor database. The cost model was designed to function as a standalone or be called in 

as an Excel-customized macro by other programs. 

2.6.1 Surface Facility Design and Economics 

Surface equipment for a GDHC system mainly consists of a distribution network, a series 

of heat exchangers for heating, and an absorption chiller system for cooling. This part of 

the study illustrates the surface equipment layout, the necessary design and their cost 

evaluation. 

The GDHC system aims to provide heating and cooling to a large number of people. The 

assumption that every person at the target area would accept the geothermal energy at the 

beginning eliminates concerns about gradual expansion of the distribution network. Since 

geothermal reservoirs exist in different locations with different population densities, a 

general living pattern was assumed and imposed on the design of the distribution 

network. As shown in Figures 2.8a, 2.8c, and 2.8d, it was assumed that houses are spaced 

geographical-uniformly throughout the whole area. A uniform distance between two 
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buildings was assumed as DNN, which decreases with increase in population and number 

of houses. When the population reaches a point such that DNN reaches a required 

minimum, people tend to live in apartment buildings rather than building more houses. 

The described housing pattern is repeated by more number of apartment buildings with 

larger building stories until the population reaches saturation. It is to be noted that at low 

population density, people tend to live closely as shown in Figure 2.8b, rather than the 

assumed scenario illustrated in Figure 2.8a. However, the use of a GDHC system in a low 

population density area may not be economically feasible since its cost per capita is 

expected to be much higher. Developing GDHC for such a scenario is not the interest of 

this study. 

 

Figure 2.8: The housing pattern with increase population and distribution network design. 

The geothermal production wells were assumed to be located at the center of the target 

area. Based on the Xia’s research on Hong Kong’s cooling distribution network (Xia, et 

al., 2011), a tree-shaped design shown in Figure 2.8e, is more economical than a radial-

shaped design shown in Figure 2.8f, when the service nodes are greater than ten. 

Furthermore, the length of the pipeline L is a function of the service nodes number N and 
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the average distance between two nodes DNN, as shown in Equation 2.16. Based on 

Ogden’s research on the hydrogen transition strategies, the average distance between two 

nodes DNN, is a function of the target area A and nodes number N, as shown in Equation 

2.17. 

04.1NDL NN        (2.16) 

NADNN /15.0        (2.17) 

As a result, the length of the distribution line was calculated in Equation 2.18, 
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The capital cost of the pipeline CAPpipe was calculated in Equation 2.19 to 2.21, based on 

Persson and Werner’s research on hot water distribution cost based on European cities 

(Persson and Werner, 2011). 

0cLCAPpipe        (2.19) 

210 cDcc        (2.20) 

0007.0)/ln(0486.0  LGD S     (2.21) 

Where c0, c1, and c2 are cost constants for the pipeline, as shown in Table 2.4, D is the 

pipeline diameter, and Gs is the annual energy provided through the pipeline.  

Table 2.4: Cost constants for pipeline capital cost calculation. 

 c1, $/m c2, $/m
2
 

Outer area, population <1500 198.716 1818.448 

Median, 1500<population<5000 281.624 2270.1 

Inner city, population >5000 376.316 2660.952 
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Equation 2.22 to 2.26 were used to estimate the pumping cost PC, where ΔPf is the 

pressure drop due to the friction, f is the friction coefficient, ρ is water density, v is the 

water flow velocity, Re is the Reynolds number, e is electricity rate,  ̇ is the volume flow 

rate,   ̇ is the mass flow rate, ηpump is the pump efficiency, and t is the pumping time. The 

friction coefficient f was calculated by Equation 2.23 for turbulent flow (10
4 

> Re > 

4×10
8
), where   is the average roughness for steel pipes, and was assumed to be 0.045 

mm (Chen, 1979). 
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A basic building heating unit is shown in Figure 2.9, with a shell and tube heat exchanger 

outside the building (OUT-HXER), and a hot water radiator inside the building 

(RADIATOR). The geothermal hot water is sent to each building and go through the 

shell side of the heat exchanger. Another loop of water is circulating through the tube 

side of the heat exchanger and the radiator. The use of the secondary loop of water inside 

the building helps to prevent hot corrosive geothermal water from scaling the indoor 

pipes which are usually installed inside the walls and are hard to replace. 
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Figure 2.9: Schematic of the building heating unit of a GDHC system. 

The theory of heat exchanger design has been well developed, e.g. (Fraas, 1989), and 

(Shah and Sekulic, 2003). The size of the OUT-HXER was determined by a set of user 

defined parameters at reference state, which are shown in Table 2.5.  

Table 2.5: Streams table of the building heating unit. 

Stream From To 
Value at 

reference state 

Tp 
Production 

well 
OUT-HXER 

85°C to 210°C, 

from reservoir 

database 

Tr OUT-HXER 
Reinjection 

well 
43°C 

Ts OUT-HXER RADIATOR 80°C 

To RADIATOR OUT-HXER 40°C 

HEAT RADIATOR 
Inside 

building 

Peak heating 

demand 

 

The size of the OUT-HXER was calculated by Equation 2.27 and 2.28, where AHX is the 

heat transfer area,   ̇  is the estimated peak heating demand, U is the heat transfer 

coefficient, F is the correction factor, and subscript 0 indicates the reference state. The 

Building wall 
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OUT-HXER was assumed to be a single shell pass, two tube passes heat exchanger, and 

the correction factor F was found from Bowman, et al.’s chart for a 1-2 heat exchanger 

(Bowman, et al., 1940). 

)/( 00 outHX LMTDFUHA       (2.27) 
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For the hot water radiator inside the building, the film coefficients of the streams inside 

and outside of the tubes were assumed to be constant. Therefore, the overall heat transfer 

coefficient was also assumed to be constant. Then the Valdimarsson’s equation was used 

to calculate the normal operating states based on the reference state of the hot water 

radiator, as shown in Equation 2.29 (Valdimarsson, 1993). 
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The temperature drop of the water inside the radiator was assumed to be 40°C, and the 

heating demand was assumed to follow the sine function throughout the whole year with 

the peak demand occurs at minimum ambient temperature, as shown in Equation 2.30 

and Equation 2.31: 

40 os TT        (2.30) 

  )
365

cos(0 nHH 
      (2.31) 

The Ts and To was then solved on a daily basis. The mass flow rate of the geothermal 

production water was calculated by Equation 2.32, where 3 or TT . 

)](/[ rpwaterp TTCHm        (2.32) 
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The capital cost of the heat exchanger CAPHX was calculated by Equation 2.33 

(Stevenson, 2014), where c3 is the cost constant for heat exchangers. 

])(ln0681.0)(ln30863.0821.8exp[ 2

3 HXHXHX AAcCAP    (2.33) 

A centralized single-effect water/lithium bromide absorption chiller was assumed in this 

study, as illustrated in Figure 2.10. Design of the absorption chiller system consulted 

Somers’ work (Somers, et al., 2011). Table 2.6 shows the stream table of the absorption 

chiller system. The distribution network is switched to deliver chilled water to each 

building in summer. The absorption chiller system mainly has three phases, which are the 

evaporation, absorption, and regeneration. The low pressure water (stream 9) goes 

through the evaporator, evaporates into the steam, and extracts energy from the 

surrounding environments, which provides cooling. The use of the valves and the pump 

is to decrease the evaporator feeding’s pressure in order to stimulate the evaporation 

process. The pure steam (stream 10) is then absorbed by the concentrated LiBr solution at 

the absorber. The use of LiBr solution can significantly increase its capability of 

absorbing steam. Then the LiBr solution (stream 1) is heated up by a series of heat 

exchangers so that water can be flashed back into steam (stream 6) for the next loop of 

the evaporation process. The geothermal hot water is used in one of the heat exchangers 

(HX-GEO). So the incoming temperature of stream GEOIN was equal to the geothermal 

production temperature, while the return temperature of stream GEOOT was calculated 

by assuming a pinch temperature of the heat exchanger HX-GEO to be 5°C. Table 2.6 

shows the streams properties for providing a 6.3 MWth cooling demand. For other cooling 

demands, this model is simulated to determine the flow rates of the streams, while the 

temperatures and pressures are the same. Therefore, mass flow of the geothermal 

production water at heat exchanger HX-GEO was calculated by Equation 2.34, where 

 ̇   is the net duty of HX-GEO calculated by the Aspen Plus model. 

)](/[ rpwaterHXp TTCQm        (2.34) 
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Table 2. 6: Streams table of the absorption chiller system. 

Stream 1 2 3 4 5 6 

Temperature, °C 32.70 32.69 64.80 65.76 90.00 89.90 

Pressure, kPa 0.67 7.46 7.46 7.46 7.46 7.46 

Flow rate, kg/s 32.40 32.40 32.40 32.40 32.40 2.68 

LiBr fracture, % 21.84 21.84 21.84 21.84 21.84 0 

Vapor fracture,% 0.00 0.00 0.00 0.00 12.00 100.00 

 

Table 2.6 continued 

Stream 7 8 9 10 11 12 13 

Temperature, °C 78.40 40.20 1.31 1.30 89.90 53.30 43.15 

Pressure, kPa 7.46 7.46 0.67 0.67 7.46 7.46 0.67 

Flow rate, kg/s 2.68 2.68 2.68 2.68 29.72 29.72 29.72 

LiBr fracture, % 0 0 0 0 25.75 25.75 25.75 

Vapor fracture,% 100.00 0.00 9.30 100.00 0.00 0.00 1.10 
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Figure 2.10: Schematic of the absorption chiller, cooling provided at EVAP, geothermal 

hot water flows through HX-GEO. 

The capital cost of the absorption chiller CAPAC was calculated by Equation 2.35 to 2.37, 

where CAPabs is the absorption tank cost, CAPpump is the centrifugal pump cost,  ̇  is the 

estimated peak cooling demand, c4 and c5 are cost constants for the absorption tank and 

the pump (Mahone, 1998). 

pumpabsHXAC CAPCAPCAPCAP      (2.35) 
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04 CcCAPabs
       (2.36) 

05 CcCAPpump
       (2.37) 

The annual operation and maintenance cost (O&M) of the surface facilities was 

calculated by investigating the direct cost, such as the labor cost clabor and the fixed cost 

(tax and depreciation), as shown in Equation 2.38 (Turton, et al., 2008). clabor is found 

from the Bureau of Labor Statistics (BLS, 2013). 

)(246.0065.2 ACHXpipelaborsurface CAPCAPCAPcOM   (2.38) 

2.6.2 Well Design and Economics 

Geothermal drilling technology has been adapted from oil and gas practices, and has 

matured in the past 30 years since the development of the Geysers geothermal power 

plants in California. The maximum well production rate in this study was assumed to be 

40 kg/s, and preliminary research has shown that for most of the target areas, three 

production wells are enough to provide sufficient energy for heating and cooling 

purposes. The injection-production wells arrangement was assumed to follow the oil field 

practice, with well spacing around 500 meters to ensure maximum energy extraction and 

minimum thermal drawdown for such a geothermal system with 30 years lifetime. With 

the exception of wells in EGS reservoirs, wells were assumed to be drilled to the depth 

from the USGS database identified in section 2.4 to reach the desired temperature and 

sufficient fracture for water flow. Subsequently, the number of production wells is 

calculated based on the required mass flow estimated in the surface design part in section 

2.5. For deep EGS wells, the high cost of deep drilling will offset the advantage of the 

high temperature. The optimum among these scenarios must be discussed case by case, 

and is not included in this study. 

Geo-fluid pumping is also needed, for injection wells to overcome the friction losses and 

for production wells to lift the production water to the surface. The setting depth of the 

pump dpump and its capacity  ̇     were calculated by Equation 2.39 and 2.40, where PR 

is the reservoir pressure, fR is the overall friction. The cost of the pump was calculated by 
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Equation 2.41. Calculations of annual pumping cost in the well field followed the same as 

described in section 2.5. 

)1( R
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Rpump
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P
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     (2.39) 

pumppumppump dW /40      (2.40) 

 pumppump WcCAP  5       (2.41) 

There are not enough geothermal drilling data available to give an accurate estimation of 

the overall exploration to completion stages of geothermal wells. However, the oil and 

gas well drilling industry is well established with thousands of wells drilled every year. 

For this part of the study, collaborating with Cornell University geothermal group, the 

MIT Depth Dependent (MITDD) drilling index was updated with the latest available 

drilling data, and was used for the drilling cost estimation. The overall drilling expense 

and overall drilling depth database were updated to 2009 based on the Joint Association 

Survey on Drilling Costs 2009 (JAS) from the American Petroleum Institute. For an 

assumed drilling depth interval, the cost per meter data was calculated, then a unified 

polynomial function was used to fit all the data from all the drilling intervals, as shown in 

Equation 2.42. Figure 2.11 pictures the function between the drilling depth and the 

drilling cost. 

310414 100292.410908.11592.1 RRdrill ddCAP  
  

 RR dd   326 105065.8105874.2   (2.42) 
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Figure 2.11: The drilling cost function with drilling depth. 

The exploration wells are used by geologists to explore and confirm the existence of 

geothermal energy. The success of the exploration wells is essential to an economical 

drilling activity. Cost of exploration wells is usually less than that of production wells, 

but depends on the successful rate. The cost of exploration CAPexpl was calculated by 

Equation 2.43, where c6 is cost constant, and χ is the exploration successful rate. 



1
)exp(58.0 6exp  Rl dcCAP     (2.43) 

For near hydrothermal EGS reservoirs, well stimulation is needed to increase the porosity 

and permeability of the reservoir. The cost of stimulation CAPfracture is mainly the cost of 

huge amount of water used to fracture the reservoirs, and hence the pumping cost and 

water storage cost. Practices from the Marcellus shale industry suggest a cost range at $ 

1500 to $ 1800 per meter of hydraulic fracturing. For a depth of 2500 meter reservoir, 0.8 

million kilograms of water is needed to pump into the reservoir in 24 hours, creating a 69 

MPa pressure to stimulate the rocks. The detailed cost is shown in Table 2.7, calculation 

based on cost per unit mass of water from Hefley and Seydor’s research on Marcellus 

shale gas explorations (Hefley and Seydor, 2011). Estimations for the stimulation cost of 

the near hydrothermal EGS resources in this study followed the same process.  
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Table 2.7: Stimulation cost breakdown for a 2,500-meter well based on practices from the 

Marcellus shale industry. 

Item Cost, $ 

Water 648 

Pump fuel 8,000 

Storage 180,000 

Pipeline 475,200 

Sand 1,600 

Total 665,448 

 

The annual operation and maintenance cost (O&M) of the well side was calculated as 

25% of the labor cost clabor and 1% of the capital investment, as shown in Equation 2.44. 

)(01.025.0 exp fractureldrillpumplaborwell CAPCAPCAPCAPcOM   (2.44) 

2.6.3 Risk Analysis 

In 2009, the US Department of Energy Geothermal Technology Program conducted a 

detailed risk analysis of the EGS technology (Young and Augustine, 2010). This part of 

the study consulted some of the probabilistic metrics which are also essential for the 

economics of the hydrothermal resources and near hydrothermal EGS from the risk 

analysis report. Moreover, the reservoir temperature profiles from the USGS database are 

also in a range of values with possibilities. With these probabilistic metrics, estimations 

of resources’ thermal potential and their LCOH are expected in in a range of values with 

possibilities. Table 2.8 lists the probabilistic metrics which were used in this study. The 

Palisade decision tool @Risk was used to conduct Monte Carlo simulations for the risk 

analysis in this study. 
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Table 2.8: Probabilistic metrics for risk analysis in the cost model, data follows a triangle 

distribution, in the format of (minimum value, most likely value, maximum value). 

             Type 

Metrics 

Identified 

hydrothermal 

resources 

Undiscovered 

hydrothermal 

resources 

Near-hydro EGS 

resources 
Reference 

Reservoir 

temperature 
Data directly or estimated from USGS database USGS 

Exploration 

success rate 
(0.2, 0.35, 0.5) (0.1, 0.17, 0.25) (0.2, 0.35, 0.5) 

Young 

and 

Augustine, 

2010 

Non-well 

exploration 

cost, ×10
6
 $ 

(0.513, 1.174, 2.002) (0.417,1.314, 2.534) 

Drilling cost 

multiplier 
(0.59, 0.86, 1.18) 

Stimulation 

cost multiplier 
NA NA (0.9, 2.6, 5.0) 

 

2.6.4 Cost Model Implementation 

Levelized cost of energy has been used in many renewable energy researches. It is a 

measurement of the overall competitiveness of a particular type of energy technology. It 

represents the cost per unit energy of building and operating an energy-providing 

technology over an assumed financial life (EIA, 2013). To this point, the capital costs and 

the O&M costs of the surface facilities and the geothermal wells have been discussed. 

The levelized cost of thermal energy for GDHC systems was calculated by Equation 

2.45. 


 


SG

PCOMCAP
LCOH

)(
    (2.45) 
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Here a constant discount rate r was used to discount future expense back to the present, 

and the project lifetime was assumed to be 30 years. The capital investment was 

calculated by Equation 2.46. 

)( wellsurface CAPCAPCAP      (2.46) 

Annual O&M and pumping cost were calculated by Equation 2.47. 
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  (2.47) 

The overall energy provided in 30 years was calculated by Equation 2.48. 
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For all the resources, CAPsurface is the sum of CAPpipe, CAPHX, and CAPAC; CAPwell is the 

sum of CAPpump, CAPdrill, and CAPexpl, noting that CAPwell also includes CAPfracture for 

near hydrothermal EGS resources. The cost model calculated the LCOH for the 253 

identified hydrothermal resources, 20 regions for the undiscovered hydrothermal 

resources, and the other 253 near hydrothermal EGS resources sequentially, and 

generated the supply curve. 

2.7 Thermal Potential for GDHC System 

2.7.1 Identified Hydrothermal Resources 

Total available mass flow rate of each identified hydrothermal resource was first 

estimated. A summary of the reservoir characteristics is in Appendix A-1. Figure 2.12 

shows the histogram of the mass flow. It is seen that mass flow is mostly less than 120 

kg/s, and therefore, a maximum of three production wells would be sufficient. 
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Figure 2.12: Histogram of the identified hydrothermal resources mass flow rates and the 

predicted probability density curve. 

The overall thermal potential was then estimated with a mean of 72,577 MWth, a 95% 

probability of 33,250 MWth and a 5% probability of 113,535 MWth by Monte Carlo 

simulations. Currently, there are quite a few numbers of resources already under 

development or in operation, mainly for geothermal power generation and space heating. 

The installed power generation capacity from identified hydrothermal resources is 2,479 

MWe (Augustine, et al., 2011), and that of space heating is around 215 MWth (Lund, et al., 

2011). If assuming an overall 10% efficiency of thermal energy to power generation, the 

remaining thermal potential from identified hydrothermal resources would have a mean 

of 47,566 MWth. Figure 2.13 shows the pie chart of the hydrothermal potential 

distribution in each state, which shows that identified resources are concentrated in the 

state of California, Nevada, Alaska, and Oregon. 
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Figure 2.13: Pie chart of the remaining identified hydrothermal potential in each state, 

with a total of 47 GWth. 

2.7.2 Undiscovered Hydrothermal Resources 

For undiscovered hydrothermal resources, the favorability factor presents the ratio of the 

undiscovered hydrothermal resources to the identified hydrothermal resource. The 

calculated favorability factor for each state is shown in Table 2.9.  

Table 2.9: Favorability factor of different geothermal regions. 

Alaska 2.64 New Mexico 1.13 

Arizona 0.71 Nevada 3.40 

California 1.50 Oregon 1.70 

Colorado 1.02 Utah 1.44 

Hawaii 13.45 Washington 0.39 

Idaho 1.85 Wyoming 0.59 

Montana 0.43   
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A summary of the reservoir characteristics of the undiscovered hydrothermal resources is 

in Appendix A-2. Thermal potential of the undiscovered hydrothermal resources is 

calculated with a mean of 159,566 MWth, a 95% probability of 70,953 MWth, and a 5% 

probability of 253,071 MWth. Figure 2.14 shows the pie chart of the undiscovered 

hydrothermal potential distribution in each state, which shows that undiscovered 

resources are concentrated in the state of California, Nevada, Hawaii, and Alaska. This is 

quite evident from the favorability map in Figure 2.4. And regions with more identified 

resources are more likely to have more undiscovered resources. Such states (CA, NV, HI, 

AK, OR) should be more focused when exploring geothermal energy. 

 

Figure 2.14: Pie chart of the undiscovered hydrothermal potential in each state, with a 

total of 159 GWth. 

2.7.3 Near Hydrothermal EGS Resources 

The near hydrothermal EGS has the same reservoir depth and temperature with its 

proximal hydrothermal reservoir. The thermal potential of each near hydrothermal EGS is 

the thermal potential difference between the mean and the high-end estimation of its 

corresponding hydrothermal resources. A list of the calculated near hydrothermal 

resource is shown in Appendix A-1. The overall thermal potential was estimated at 
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40,958 MWth. The top five resources with the most thermal potential were all found in 

California, which are Salton See area (8,393 MWth), Geysers area (3,432 MWth), Brawley 

(2,080 MWth), Coso area (1,415 MWth), and Medicine Lake area (1,375 MWth). 

2.8 LCOH Estimation and Supply Curve Development 

2.8.1 Identified Hydrothermal Resources 

As stated in section 2.5, the GDHC system must be built at a populated location, so that 

the geothermal hot water can be consumed without much of the energy loss. There are 

some of the geothermal resources identified in this study with very few people living near 

them. With the levelized cost model, the calculated levelized costs at such locations were 

extremely high, more than $ 150/MMBtu. In the following analysis, those locations with 

unreasonably high levelized cost are neglected. Figure 2.15 shows the calculated LCOH 

of the identified hydrothermal resources coupled with a geothermal temperature map at 

6.5 km. The color of the dot indicates the calculated LCOH, while the size of the dot 

indicates the population size. A cost summary of each resource is shown in Appendix A-

1. All the resources with competitive levelized cost can be characterized as with median 

or high reservoir temperature, with median or low drilling depth, and with large 

population size. 
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Figure 2.15: Maps of the identified hydrothermal resources, coupled with a western U.S. 

geothermal temperature map at 6.5 km. 

It is not practical to show the LCOH calculation of all the resources. Instead, Figure 2.16 

shows the overall cost breakdown by sorting the resources into nine different categories 

by population and depth. The overall cost during 30 years is around $ 40 to 60 million. It 

is clear that overall cost increases with the depth increases because of the significant well 

capital increase. The overall cost also increases with the population increases because of 

the significant surface capital increase. The surface capital dominates the investment 

when the drilling depth is smaller than 1000 meters, while the wells capital dominates the 

investment when the drilling depth is larger than 1000 meters. 
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Figure 2.16: Cost breakdown of the GDHC projects of identified hydrothermal resources. 

Among all the identified hydrothermal resources, the Weiser area in Idaho has the lowest 

levelized cost, at a mean of $ 6.74/MMBtu. Table 2.10 shows the cost summary of the 

GDHC project at the Weiser area. The overall cost during 30 years is $ 84 million, and 

the overall energy provided is 12.5×10
6
 MMBtu. 

Table 2.10: Cost summary for the simulated GDHC system at Weiser, ID. 

Capital Investment 

Wells Drilling 16.9×10
6 

$ 

Wells Exploration & 

Miscellaneous 
3.0×10

6  
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Production Wells Pumps 1.1×10
6  

$ 

Injection Wells Pumps 1.3×10
6 

 $ 

Surface Heating/Cooling 1.9×10
6 

 $ 

Distribution System 23.0×10
6 

 $ 

O&M 

Wells Field 0.4×10
6 

 $/y 

Surface Heating/Cooling 1.6×10
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 $/y 

System pumping 0.4×10
6 

 $/y 
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Figure 2.17 shows the year-round temperature profiles of the main streams of the surface 

heating/cooling facility, if the GDHC system is built at the Wesier area. The incoming 

temperature of the geothermal water Tp is constant throughout the year at 90°C. During 

the space heating days, the supply temperature of the hot water radiator Ts increases with 

the ambient temperature Tab decreases due to heating demand increases. During the space 

cooling days, the geothermal hot water is directly used in the absorption chiller system. 

And the supply temperature Ts is the same to the production temperature Tp.  

 

Figure 2.17: Temperature profile of main streams of the GDHC system in the Weiser area 

in Idaho. 

Figure 2.18 shows the year-round mass flow rate profile of the geothermal production 

water regarding to the daily heating or cooling demand, if the GDHC system is built at 

the Wesier area. The maximum flow of production water is at the peak heating demand 

with 210 kg/s, which requires six production wells. Since the cooling demand is much 

smaller than the heating, the required flow rate in summer is therefore much less than that 

in winter. 
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Figure 2. 18: Year-round flow rate profile of the geothermal production water of the 

GDHC system in the Weiser area in Idaho, corresponding to the daily system energy 

production. 

The supply curve was then plotted based on each resource’s paired thermal potential and 

the LCOH. Here, as shown in Figure 2.19, the supply curve is truncated at 50 GWth to 

emphasize the resources with the lowest levelized cost, which are likely to be developed 

first. There are around 5 to 8 GWth of thermal energy which can be utilized under 

$ 40/MMBtu. According to Edenhofer, et al., the cost of heating from any form of 

renewable energy becomes competitive to others when the price is not more than 

$ 40/MMBtu (Edenhofer, et al., 2011). In comparison with the current cost of residential 

heating by natural gas, which is $ 9.2/MMBtu (EIA, 2013), there is only a very small 

amount of identified hydrothermal energy which can be utilized cheaper than this cost, 

while the most of the identified resources are still above that cost. 
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Figure 2.19: Supply curve of the identified hydrothermal resources, truncated at 50 GWth, 

in comparison with the current cost of heating by natural gas, which is $ 9.2/MMBtu. 

2.8.2 Undiscovered Hydrothermal Resources 

For undiscovered hydrothermal resources, the reservoir characteristics are more like the 

larger identified geothermal reservoirs in each region. However, the local energy demand 

cannot be determined since the location is unknown. When estimating the LCOH for this 

category of the resource, local energy demand was assumed to be that of the most 

populated place in that region. Figure 2.20 shows the overall cost breakdown of 

undiscovered hydrothermal resources. It is clear that overall cost still follows the trend as 

found from the identified ones, increasing with the increase in drilling depth and 

population. But for each column, the well capital increases because of the increasing 

exploration cost, and hence increase the overall cost. Among all the undiscovered 

resources, the ones in California with temperature greater than 150°C has the lowest 

LCOH at $ 8.39/MMBtu. Table 2.11 shows the cost summary if the GDHC project built 

in that region. The overall cost during 30 years is $ 78 million, and the overall energy 

provided is 9.3×10
6
 MMBtu. 
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Figure 2.20: Cost breakdown of the GDHC projects of undiscovered hydrothermal 

resources. 

Table 2.11: Cost summary for the simulated GDHC system in California with an 

undiscovered hydrothermal resource. 

Capital Investment 

Wells Drilling 23.3×10
6 

 $ 

Wells Exploration & 

Miscellaneous 
10.5×10

6 
 $ 

Production Wells Pumps 0.56×10
6 

 $ 

Injection Wells Pumps 0 $ 

Surface Heating/Cooling 0.7×10
6 

 $ 

Distribution System 19.8×10
6 

 $ 

O&M 

Wells Field 0.4×10
6 

 $/year 

Surface Heating/Cooling 1.0×10
6 

 $/year 

System pumping 0.1×10
6 

 $/year 
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have a LCOH less than the current natural gas heating. Furthermore, there are up to 120 

GWth of undiscovered resources which have a LCOH less than $ 40/MMBtu, which will 

be the most valuable resources, and to be developed first in future geothermal studies. 

 

Figure 2.21: Supply curve of the undiscovered hydrothermal resources, in comparison 

with the current cost of heating by natural gas, which is $ 9.2/MMBtu. 

2.8.3 Near Hydrothermal EGS Resources 

The LCOH of the near hydrothermal EGS is very similar to that of the identified 

hydrothermal ones, except that for the near hydrothermal EGS, artificial permeability-

increasing technology (e.g. hydraulic fracturing) is required, which increases the well 

drilling capital. Among all the near hydrothermal EGS resources, the Weiser area in 

Idaho still has the lowest LCOH at $ 7.87/MMBtu. The cost summary is similar to what 

is presented in Table 2.10, except that there is an added stimulation cost of about $ 13 

million
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overall energy provided is 12.5×10
6
 MMBtu. Figure 2.22 shows the supply curves of the 

near hydrothermal EGS resources with different flow rates. 

 

Figure 2.22: Supply curve of the near hydrothermal EGS, truncated at $ 100/MMBtu, in 

comparison with the current cost of heating by natural gas, which is $ 9.2/MMBtu. 

Due to the uncertainty of the mass flow rate of each EGS reservoir, 40 kg/s, 60 kg/s, 80 

kg/s were used as flow rate inputs for each case. Theoretically, with increasing flow rate, 

the levelized cost decreases because of the decreased number of production wells. The 

several resources at the left end of the supply curve in Figure 2.22 do follow such pattern: 

the levelized cost of the 80 kg/s scenario is the lowest, while that of the 40 kg/s scenario 

is the highest. For the other resources in this study, most locations only have a small 

energy demand, usually below 10 MWth. Therefore, one production well with a 40 kg/s 

water flow rate is sufficient to provide the energy demand. Increase in mass flow rate will 

not efficiently decrease the levelized cost. As a result, supply curves for the three 

different mass flow rate scenarios overlap for the most parts as shown in Figure 2.22. 
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2.8.4 The GDHC Supply Curve 

Figure 2.23 shows the supply curve of three categories of geothermal resources, Figure 

2.24 combines them together, and Figure 2.25 partially enlarges the part with reasonable 

cost. The near hydrothermal EGS resource is always coupled with its corresponding 

hydrothermal one with a slightly higher cost. Since most of the low cost hydrothermal 

resources have already been developed into power generation, their corresponding EGS 

resources may be good choices for expanding the existing system. There are also a large 

amount of hydrothermal resources undiscovered with a very low LCOH, which deserve 

more attentions in the future geothermal exploration. 

 

Figure 2.23: Supply curve of the U.S. GDHC application with different categories of 

geothermal resources. 
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Figure 2.24: Supply curve of the U.S. GDHC application. 

 

Figure 2.25: Partial enlargement of the supply curve, in comparison with the current 

natural gas heating cost, which is $ 9.2/MMBtu. 
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2.9 Discussion 

Discussions of the LCOH in this part of the study are based on results from identified 

hydrothermal resources and near hydrothermal EGS resources. Some of the system inputs 

such as population and reservoir gradient are uncontrolled factors. The following part 

discusses such uncontrolled factors’ effects on the LCOH. 

2.9.1 Population’s Effect on LCOH 

The population has a significant effect on the LCOH of a GDHC system. Figure 2.26 

shows the population served by the identified hydrothermal resources based GDHC 

systems versus their LCOH. It shows that a resource with a larger population tend to have 

a lower LCOH, while a resource with a smaller population tend to have a higher LCOH. 

The predicted trend line in Figure 2.26 was fitted with a polynomial function by the least 

square error regression analysis, as shown in Equation 2.49. A larger population means a 

larger annual energy production, which is the denominator of the LCOH calculation, and 

hence decreases the LCOH. However, a larger population also means larger surface 

heating/cooling facilities, a larger distribution network, and more production wells. Thus, 

the constant in Equation 2.49 can be interpreted as the minimum LCOH with saturated 

population of a particular location. 

6469.110202 7495.0  pplLCOH     (2.49) 
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Figure 2.26: Population served by identified hydrothermal resource based GDHC systems 

versus their LCOH. Blue dots are identified resources, and the trend line shows the 

predicted LCOH as a function of the population.  

2.9.2 Geothermal Gradient’s Effect on LCOH 

The effect of the geothermal gradient is not significant to the LCOH, but locations with 

higher gradients still tend to have a lower LCOH, as shown in Figure 2. 27. Most of the 

geothermal gradients of the identified resources are less than 0.2°C/m, while the 

corresponding LCOH range from $ 10 to 140 per MMBtu. For hydrothermal resources 

and near hydrothermal EGS resources, the reservoir depths are fixed. Efforts to lower the 

drilling depth cannot ensure sufficient mass flow rate. This is the reason why gradient has 

little effect on the LCOH. However, it can be predicted that for a deep EGS based project, 

a higher gradient means less drilling capital and a higher production temperature and 

surely, a decrease in the LCOH. 
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Figure 2.27: Geothermal gradients of the identified hydrothermal resources versus their 

calculated LCOH for the GDHC systems. 

2.9.3 Model Sensitivity 

To determine the sensitivity of the cost model, six technical or economic parameters from 

the model were selected, which are the energy demand, reservoir temperature, drilling 

cost, project lifetime, discount rate, and surface capital. Simulations were run for each 

parameter with -50%, -25%, +25% and +50% changes while the others stayed constant. 

Corresponding LCOH changes based on varies of the parameter were recorded. Results 

of the sensitivity analysis are shown in Figure 2.28. The energy demand has the most 

significant negative effect, while drilling cost has the most significant positive effect on 

LCOH. Moreover, increasing the energy demand is the most effective way to decrease 

LCOH. The project lifetime and reservoir temperature also have a negative effect on 

LCOH, while surface capital and discount rate have a positive effect on LCOH.  
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Figure 2.28: Sensitivity analysis of the cost model, showing energy demand has the most 

significant negative effect, while drilling cost has the most significant positive effect. 

2.10 Conclusion 

This part of the study focuses on the supply curve of geothermal district heating and 

cooling application. Geothermal resources were categorized into identified hydrothermal 

resources, undiscovered hydrothermal resources, near hydrothermal EGS resources and 

the deep EGS resources. Owing to the high cost of the deep EGS resources, only the first 

three categories have been discussed in this part of the study. 253 hydrothermal resources 

were identified from literature review, and 253 near hydrothermal EGS resources were 

assumed. Due to the uncertainties of the undiscovered resources, this category of 

hydrothermal resources was estimated by calculating their occurrence possibility in each 

state. As a summary, estimated thermal potential from each category of the resources is 

presented in Table 2.12. Following the fact that nearly half of the identified hydrothermal 

resources have already been developed into other applications such as power generation, 

the remaining potential from this category is about 47,566 MWth, which is concentrated 

in the states of California, Nevada, Alaska, and Oregon. Estimated thermal potential from 
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the undiscovered hydrothermal resources is about 159,566 MWth, which is concentrated 

in the states of California, Nevada, Hawaii, Alaska, and Oregon. Estimated thermal 

potential from the near hydrothermal EGS resources is about 40,958 MWth. 

Table 2.12: Estimated thermal potential and the corresponding lowest LCOH from the 

western U.S. geothermal resources. 

 
5 Percentile, 

MWth 

50 Percentile, 

MWth 

95 Percentile, 

MWth 

Lowest LCOH, 

$/MMBtu 

Identified 

hydrothermal 

resources 

33,250 72,577 113,535 6.74 

Undiscovered 

hydrothermal 

resources 

70,953 159,566 253,071 8.39 

Near 

hydrothermal 

EGS 

40,958 7.87 

 

This study also developed a cost model for the GDHC system, which enables a matrix of 

20 user-defined inputs to characterize the geothermal resources as well as the target 

energy demand. The cost model was used for every resource to simulate the lifetime 

heating/cooling process, capital investment, and operation and maintenance activities. As 

a result, the lowest LCOH of identified hydrothermal resources to develop a GDHC 

system is at Weiser in Idaho, with a LCOH at $ 6.74/MMBtu. That of the undiscovered 

hydrothermal resources is estimated at $ 8.39/MMBtu in the state of California, and that 

of the near hydrothermal EGS resources is $ 7.87/MMBtu, also at Weiser in Idaho. For 

similar geologic settings, LCOH for the identified hydrothermal resource is the lowest, 

while that for the undiscovered hydrothermal resource is the highest because of the high 

exploration cost. All the resources with competitive levelized cost can be characterized as 

with a median or high reservoir temperature, a median or low drilling depth, and with a 

large population size. Analysis of the results revealed that population has significantly 
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greater effect on LCOH than geothermal gradient. The energy demand has the most 

significant negative effect, while drilling cost has the most significant positive effect on 

LCOH. Increasing the energy demand is the most effective way to decrease LCOH. 

Finally, the supply curve of GDHC application was developed. It shows the order in 

which resource should be developed based on the LCOH results. There are about 50% of 

the thermal potential with a levelized cost lower than $ 40/MMBtu. With the exception of 

the lowest cost of the identified hydrothermal resource (Weiser area, ID) and its 

corresponding EGS resource, over 60 GWth of the potential is still undiscovered, with a 

cost lower than the natural gas heating. Moreover, there is another 35 GWth of the 

undiscovered hydrothermal resources with LCOH between less than $ 25/MMBtu. The 

near hydrothermal EGS is the least expensive type of EGS resource. The levelized cost of 

the near hydrothermal EGS is a little higher than its corresponding identified 

hydrothermal resource. Thus in the supply curve, the near hydrothermal EGS and the 

identified hydrothermal resource are usually coupled. In fact, there is not much thermal 

potential available from identified hydrothermal resources, since most of the low cost 

resources have already been developed with other applications such as power generation. 

So the near hydrothermal EGS corresponding to the most competitive identified 

hydrothermal resources may be a good choice for expanding the existing system.  

 

 

 

 

 



67 

 

Chapter 3 

Techno-Economic Assessment of 

GDHC Systems: A Case Study on West 

Virginia University 

3.1 Introduction 

Geothermal energy has the advantages of sustainable energy output with a high capacity 

factor, but hydrothermal geothermal resources only exist in very few locations worldwide. 

Exploitable geothermal resources require three elements at the same time, which are the 

hot enough reservoir, the water itself, and permeable subsurface structure so that the hot 

water could be delivered to the surface. However, most of the geothermal resources 

consist of impermeable subsurface structure. Therefore, technology of the enhanced 

geothermal system (EGS) would be used to enhance the rock permeability by injecting 

large amounts of water into the reservoir. 

Currently there is no large scale commercial EGS project, but only experimental 

activities operating all over the world. For example, the Fenton Hill geothermal power 

plant in New Mexico, U.S. with a net capacity of 5 MWe, and the pilot plant in Soultz, 

France with a net capacity of 1.5 MWe (Tenzer, 2001). Augustine estimated that levelized 

cost of EGS power generation is at least $ 0.27/kWh (Augustine, et al., 2010). 

Preliminary study shows that low temperature end uses such as space and water heating, 

and air conditioning contribute up to 25% of the U.S. annual energy consumption. 

Developing geothermal district heating and cooling (GDHC) systems based on EGS 

could efficiently decrease the fossil fuels usage for such low temperature applications, 

especially in the populated eastern U.S. where hydrothermal resources are not common. 

This part of the study proposes an EGS based GDHC system on the campus of West 
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Virginia University (WVU) to evaluate its competitiveness as compared to the existing 

steam based heating and cooling system. Based on this case study, empirical functions for 

solving LCOH for EGS based GDHC systems are developed and the potential locations 

in West Virginia for developing such systems mapped. The objective is to provide a 

techno-economic benchmark for future EGS based GDHC systems development. 

3.2 The Initial: West Virginia Geothermal Hot Spot 

In 2010, Frone, Richards, and Blackwell at Southern Methodist University (SMU) 

Geothermal Lab identified elevated geothermal temperatures in West Virginia. With the 

updated data from oil and gas field, the new temperature profile is significantly higher 

than the previously estimated in the MIT report – The Future of Geothermal Energy 

(Tester, et al., 2006). The high temperature geothermal region extends from the north 

central WV i.e. from Monongalia County where WVU is located, to Greenbrier County 

in the southeastern WV. This part of the study evaluates the potential to develop the EGS 

based GDHC systems in the state of West Virginia, beginning with a case study on West 

Virginia University campus. 

Geothermal energy is essentially a ubiquitous resource for which its economics vary 

regionally. The resource availability on the supply side and the energy consumption on 

the demand side must be carefully evaluated when examining a potential geothermal 

project. The large size energy consuming population, dense arrangement of the campus 

buildings, and the elevated geothermal temperature profile, makes West Virginia 

University a potential location for the GDHC development. 

The geologic cross section D-D’ (Ryder, et al., 2009) from the U.S. Geologic Survey is 

the nearest geologic cross section to illustrate the geologic framework at WVU, as shown 

in Figure 3.1, which suggests no massive aquifer layer beneath WVU. WVU is located 

about 20 km north of the well (API 47-049-00244) owned by the Phillips Petroleum 

Company, as shown in Figure 3.1. The 100-meter-thick Tuscarora Sandstone at depth 3.3 

km (10000 feet) is of interest, as the successful EGS project at Gross Schoenebeck in 

Germany also has very similar geologic conditions with that of West Virginia, as shown 
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in Table 3.1. The wells at Gross Schoenebeck were successfully stimulated by massive 

water fracture treatment which is a common reservoir fracturing method in oil industry, 

and an economical productivity was reached for a 70 kW geothermal power plant. The 

30-meter-thick Oswego Sandstone at depth 3.6 km (12000 feet) is also of interest. The 

Oswego formation extends along the Appalachian basin to the central New York state 

where horizontal wells have been drilled, making it the fourth largest natural gas 

production formation in the state of New York (NYSDEC, 2011), suggesting that 

sufficient permeability may also be reached with proper stimulation at WVU. 

 

Figure 3.1: Geologic formations near Morgantown, WV at depth of 3 to 4 km, the 

Tuscarora and Oswego Sandstone are of interest for GDHC development. 

 

 

WVU 
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Table 3.1: Comparison of the geologic conditions between Gross Schoenebeck and 

Morgantown, WV, data from Hurter, et al. (Hurter, et al., 2002) and Castle and Byrnes 

(Castle and Byrnes, 2005). 

 Rock Type Depth, m 
Average 

Permeability, mD 

Average 

Porosity, % 

Gross 

Schoenebeck 

Conglomerates 
4200 to 

4230 
0.003 4.8 

Volcanics 
4230 to 

4294 
0.005 4.3 

WVU 
Tuscarora 

Sandstone 

3200 to 

3350 
0.0048 6.8 

 

3.3 Modeling the GDHC System on WVU Campus 

This case study aims to find the levelized cost of heat (LCOH) for GDHC system on the 

Evansdale campus, WVU, to replace the current steam based heating and cooling system. 

Peak heating and cooling demand were estimated to determine the necessary amount of 

geothermal hot water production as well as to design the surface energy conversion 

facilities. Aspen Plus models of the geothermal water distribution network with building 

heating units and a centralized H2O/LiBr absorption chiller system were built to simulate 

the heating and cooling scenarios with various geothermal temperatures and flow rate 

profile. Cost estimation including cost of drilling geothermal wells, capital cost of surface 

equipment and operation and maintenance costs were made. Five pairs of temperature 

and flow rate cases were simulated to find the optimum state with the lowest LCOH. 

Moreover, three sub-cases representing three different economic settings were also 

calculated in comparison with the cost of the current steam based system, which is about 

$ 12/MMBtu for heating and cooling. 
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3.3.1 Existing Heating and Cooling Basics 

West Virginia University has three main campuses, the Health Sciences campus, 

downtown campus and the Evansdale campus. The Health Sciences campus is equipped 

with its own heating system, including two 600 hp Cleaver-Brooks boilers rated at 7.36 

MWth each. Downtown campus primarily uses steam directly through the buildings, 

while the proposed GDHC system uses a secondary water to exchange heat with the 

geothermal water and then to heat the buildings. It would not likely be economical to 

replace the steam system on downtown campus since all the buildings’ heating utilities 

would be retrofitted. Hence, only the Evansdale campus was considered for this case 

study. Most buildings on this campus use a steam/water heat exchanger system. Saturated 

steam is delivered to each building and exchanges heat with water which circulating 

through the building’s radiation system. As long as the steam pipelines allow a sufficient 

flow rate of geothermal water to deliver the necessary heat, it is reasonable to replace the 

steam by geothermal hot water without a significant facility change. As for cooling, there 

are two 300 ton dual stage steam absorption chillers and two 600 ton dual stage steam 

absorption chillers in Evansdale campus, providing cooling for a total space of 75,000 m
2
. 

The university’s steam master plan is consulted to define the pipeline network. The 

campus is served by a 200 mm (8 inch) high pressure pipeline from Morgantown Energy 

Associates. The main steam enters from the northeast of the campus and is reduced to 

0.86 MPa, 140°C saturated steam which is then distributed throughout the campus. The 

main steam line is a 250 mm (10 inch) pipeline with a pressure drop of 226 Pa/m. The 

size of the sub-stream line varies with the heating load of different building, usually 

ranging from 100 mm (4 inch) to 200 mm (8 inch). 

3.3.2 Proposed Heating and Cooling System 

The university steam master plan estimates each building’s peak heating demand by 

categorizing the buildings into classroom, greenhouse, and library. The heating demand 

coefficient for each category is 158 W/m
2
 for the classroom, 79 W/m

2
 for the green house, 

and 63 W/m
2
 for the library from the steam master plan. Peak cooling demand was 
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estimated at 95 W/m
2
 for all buildings from the steam master plan. Gross floor area of 

each building was consulted with the university facility office. Historical weather data in 

Morgantown area from the National Climatic Data Center database was used to curve-fit 

the monthly energy demand from the peak value, as shown in Equation 3.1, where  ̇ and 

 ̇ are heating and cooling demands, i is month index, HDD and CDD are degree heating 

day and degree cooling days. 

peak

i

peak

i
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HDD
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   (3.1) 

Thermal energy delivered to surface ( ̇) by a GDHC system was defined in Equation 3.2, 

where  ̇  is total mass flow rate (kg/s), Cwater is specific heat of water (J/kg/°C), TR is 

production temperature which is assumed to be the same as production temperature (°C), 

and Tr is reinjection temperature (°C). 

)( rRwaterR TTCmQ        (3.2) 

The delivered energy should be at least equal to the campus heating or cooling demand. 

With the constant geothermal gradient, the production temperature is positively linear to 

the drilling depth. The maximum flow rate per production well in this case study was 

assumed to be 50 kg/s. To provide a fixed amount of energy, the flow rate and the 

production temperature influences each other inversely based on Equation 3.2. Therefore, 

five pairs of flow rate and production temperature inputs were selected and modeled by 

Aspen Plus to find the lowest LCOH for the system. 

The layout of the Evansdale campus buildings and pipeline was used to help build the 

Aspen Plus heating model, as shown in Figure 3.2. The heating model consists of the heat 

exchangers, the pipelines, and the stream splitting nodes. The geothermal water is not 

directly used to avoid potential corrosion and scaling inside the buildings’ radiator 

systems. A secondary clean fluid is used to exchange heat with the geothermal water, and 

circulating through the building radiators. The stream fraction of each splitter was 

calculated based on the ratio of the downstream heating load to the main stream heat 

content. Overall heat loss coefficient (U) of the pipeline was calculated at 0.1874   
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    , based on a polyurethane insulation cover. Pipeline pressure drop due to frictional 

losses was assumed to be 226 Pa/m. The length of the pipeline was estimated at 4.6 km. 

No pressure drop was considered in the splitter. The system was designed to maintain the 

indoor temperature at 23.9°C in winter. 

 

Figure 3.2: Layout of the Evansdale campus buildings (classroom, greenhouse, and 

library) and pipeline, based on which the Aspen Plus heating model was built. 

Same centralized single-effect H2O/LiBr absorption chiller system as discussed in 

Chapter 2 was assumed in this case study. The absorption chiller system was also 

modeled in the Aspen Plus to provide cooling for the campus. Simulations of the Aspen 

Plus heating and cooling model helped to determine the required production temperature 

and flow rate of the geothermal water, and to choose the candidate pairs of production 

temperature and flow rate for cost analysis. 
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3.3.3 LCOH Calculation for WVU Case Study 

To ensure comprehensiveness and accuracy, three other sub-cases were also solved for 

different economic environments. Case I estimated the LCOH for a general EGS based 

GDHC system. Case II considered certain tax preferential regulations and incentives for a 

renewable energy project. On the basis of Case II, Case III solved the LCOH exclude the 

surface facility operation and maintenance costs. It is because currently the university is 

purchasing steam from the steam company at $ 12/MMBtu, which also does not account 

for the surface operation and maintenance costs. Thus, the LCOH calculated in Case III 

was used to compare with this steam cost. 

A geothermal project is characterized with a high initial investment and a relatively low 

operating and maintenance cost (Erdogmus, et al., 2006). The initial investment includes 

the surface heating and cooling capital plus the geothermal well drilling cost. The 

operation and maintenance costs for both heating/cooling process and geothermal wells 

are needed every year throughout the lifetime. For this case study, a 5% discount rate was 

assumed. Project lifetime was assumed to be 30 years. 

The equipment cost of the heating/cooling system CAPsurface, is dominated by the cost of 

heat exchangers, which was estimated by the economic evaluation function of the Aspen 

Plus model. Estimation of drilling cost CAPdrill, followed the same as discussed in 

Chapter 2, as shown in Equation 3.3, where dR is the desired drilling depth. The equation 

was derived based on drilling data from the Joint Association Survey on Drilling Costs 

2009 of the American Petroleum Institute. For each drilling interval, the overall cost was 

divided by the overall depth; then a unified polynomial function was used to fit all the 

data from all the drilling intervals. 

310414 100292.410908.11592.1 RRdrill ddCAP  
   

RR dd   326 105065.8105874.2   (3.3) 

The geothermal field O&M cost OMwell calculation used Sanyal’s equation, which is 

derived from actual cost data from GeothermEx power generation facility, as shown in 



75 

 

Equations 3.4 and 3.5 (Sanyal, 2004). The cost constant c7, in cent/kWh, is a function of 

the power capacity P. Gs is the annual providing thermal energy. 

))51.0/(0025.0exp(27  Pc     (3.4) 

swell GcOM  7       (3.5) 

The operating and maintenance cost of the heating/cooling system OMsurface, is associated 

with the day-to-day operation. The standard practice 18R-97 of the Association for the 

Advancement of Cost Engineering International (AACE) was used. Labor cost was 

assumed to be $ 100,000/year. The utility cost of a GDHC system is mainly the pumping 

cost. The geothermal circulating water was assumed to be obtained from 

Monongahela River in close proximity to WVU with no cost. Equation 3.6 to 3.10 were 

used to estimate the annual pumping cost PC, where ΔPf is the pressure drop due to the 

friction, f is the friction coefficient, ρ is water density, v is the water flow velocity, Re is 

the Reynolds number, e is electricity rate,  ̇ is the volume flow rate,   ̇ is the mass flow 

rate, ηpump is the pump efficiency, and t is the pumping time. The friction coefficient f was 

calculated by Equation 3.7 for turbulent flow (10
4 

> Re > 4×10
8
), where   is the average 

roughness for steel pipes, and was assumed to be 0.045 mm (Chen, 1979). 
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The above terms are the major cost terms for the EGS based GDHC project. Estimation 

of LCOH followed the same procedure as discussed in Chapter 2, as shown in Equation 

3.11 to 3.14. 
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3.4 Empirical LCOH Function Derivation 

From LCOH analysis of hydrothermal resources and near hydrothermal EGS in Chapter 2, 

it was concluded that energy demand has the most negative effect while the drilling cost 

has the most positive effect on LCOH. To further look into the mathematical relations 

between them, two basic GDHC system metrics were selected as LCOH function 

variables, which are population density and geothermal gradient. WVU cost model was 

used to find the function by simply changing one variable while keeping the other 

constant. 

The following part discusses several modifications of the WVU cost model for a more 

general LCOH estimation. The WVU case study directly estimated the energy demand by 

a building heating and cooling demand intensity constant, while here the energy demand 

was estimated based on population density, as shown in Equation 3.15, where P is the 

population density, A is the targeted area, hp is average household size, and δh is 

household heating intensity. P is the census tract based population density in ppl/km
2
, 

which is available from the U.S. Census Bureau. A was assumed to be 2.56 km
2
 which is 

consistent with the surface design in Chapter 2. hp in ppl/house and δh in MWth/house are 

state wide constant available from the U.S. Energy Information Administration. 
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       (3.15) 

The WVU cost model did not include the surface distribution cost, while here estimation 

of the distribution network cost was needed, and followed the same procedure as 

discussed in Chapter 2. The WVU cost model assumed the system return temperature to 

be 40°C, while here the return temperature was set as s variable. The cost model solved 

the minimum LCOH by varying the drilling depth, and was achieved by the Excel solver 

function.  

The geothermal gradient was calculated by least square error fitting with the SMU 

geothermal temperature at depth data, with surface temperature assumed to be 10°C, as 

shown in Equation 3.16, where G is the geothermal gradient, i is depth from 3.5 km to 9.5 

km, with a 1 km interval, and TRi is geothermal temperature at depth i. Then a series of 

geothermal gradients were selected based on the gradient calculation results for WV. The 

LCOH function as an equation of population density at constant geothermal gradient was 

assumed similar to what have been found from the results of the hydrothermal resources 

in Chapter 2, as shown in Equation 3.17, where a, b, and n are constants. For each 

gradient, different population densities were input into the cost model to calculate the 

LCOH. Constants a, b, and n were calculated by least square error fitting Equation 3.18 

with the population density and LCOH data. Finally, LCOH for an EGS based GDHC 

system for each of the census tract in WV was estimated. 

MINIMUM:  
5.9

5.3

2)10( RiTGi     (3.16) 

bPaLCOH n        (3.17) 

3.5 Results and Discussion 

3.5.1 West Virginia Geothermal Maps 

The geothermal temperature maps were generated by working with SMU Geothermal 

Lab. Figure 3.3 shows the geothermal temperature map of WV at 4.5 km. Other 
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geothermal temperature maps of WV can be found in Appendix B. SMU Geothermal Lab 

updated the temperature data from oil and gas wells, whose locations are also shown in 

Figure 3.3. To interpolate geothermal temperatures at other locations, the inverse distance 

weighted method was used and achieved by ArcGIS, which assumed the temperatures for 

the locations that are close to one another are more alike than those that are farther apart. 

Such an algorithm gives a more accurate estimation if the sample data is densely located. 

At 4.5 km, geothermal temperature in Morgantown is in the range of 130 to 150°C. The 

geothermal gradient at WVU was calculated to be 26.5°C/km. 

 

Figure 3.3: Geothermal temperature map of West Virginia at 4.5 km, black dots show the 

locations of oil and gas wells from which SMU updated their temperature profiles. 
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3.5.2 Campus GDHC Characterization 

With the steam master plan, the campus peak heating and cooling demand were estimated 

at 22.9 MWth and 8.6 MWth, respectively. Annual energy consumption was estimated at 

305,184 MMBtu. The monthly heating and cooling demand were also estimated, as 

shown in Figure 3.4. Peak heating demand was estimated in January, while peak cooling 

demand was estimated in July. 

 

Figure 3.4: Monthly heating and cooling demand of the Evansdale Campus, WVU. 

The GDHC system is designed to maintain the indoor temperature during winter at 

23.9°C (75°F). As discussed in Chapter 2, geothermal hot water provides heating by a 

pair of heat exchangers. By assuming the overall pinch temperature of the two 

exchangers to be 16°C, the minimum return temperature was calculated to be 40°C 

(104°F). Considering the geothermal gradient at 26.5°C/km, four geothermal production 

temperatures were selected and simulated to ensure the drilling depth is less than 5 km, 

which are 80°C, 100°C, 120°C, and 140°C. A production temperature higher or lower 

than this range would result in either a prohibitively expensive drilling cost or an 
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unreasonably large number of production wells. Figure 3.5 shows the required flow rate 

versus the geothermal return temperature at different geothermal supply temperatures 

calculated by the Aspen Plus heating model, which agrees with Equation 3.2 that to 

provide a fixed amount of heating, geothermal mass flow rate and temperature drops 

between supply and return temperature affects each other inversely.  

 

Figure 3. 5: Return temperature versus mass flow rate at selected supply temperatures to 

provide campus peak heating demand, dashed line indicates the minimum requirement 

for the return temperature. 

By assuming the minimum return temperature as 40°C, Figure 3.5 also reveals the 

required flow rate at each supply temperature so that the minimum return temperature is 

maintained. The Aspen Plus Design Spec function was used to find each minimum flow 

rate (variable) at each supply temperature (condition), to achieve a 40°C return 

temperature (target). Results are shown in Figure 3.6. The curve divides the plot into two 

parts. To provide 22.9 MWth of heating, flow rate must be selected from the section 

above the curve at each supply temperature to ensure a normal operation of the heat 

exchangers. Given practical constrains on the flow rate that can be achieved for a 

production well, maximum flow rate per well was assumed to be 50 kg/s, as plotted by 
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the dashed lines in Figure 3.6. Once above the dashed line, one additional production 

well should be drilled. The Aspen Plus Design Spec function was again used to find the 

supply temperature at 148.9°C when the flow rate is 50 kg/s, and the supply temperature 

at 95.6°C when the flow rate is 100 kg/s. Therefore, five pairs of supply temperature and 

flow rate were selected for cost estimation, as shown in Table 3.2. 

 

Figure 3.6: Minimum mass flow rate versus supply temperature to supply campus heating 

demand. Dashed lines indicate one production and two production wells’ maximum flow 

rate. Red dots indicate the selected pairs of temperature and flow rate for cost estimation. 

Since the campus heating demand is much higher than the cooling demand, any selected 

pair of supply temperature and flow rate from the heating model is able to provide 

sufficient cooling for the campus. Table 3.2 shows the five cases of supply temperature 

and mass flow rate which were investigated for WVU case study. 
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Table 3.2: Investigated cases of geothermal flow and temperature for WVU case study. 

Index Temperature, °C Flow Rate, kg/s 

1 160.0 45.26 

2 148.9 50.00 

3 120.0 68.32 

4 95.6 100.00 

5 80.0 136.47 

 

3.5.3 Campus GDHC Cost Analysis 

With geothermal gradient at 26.5°C/km and surface temperature at 10°C, drilling depths 

for case 1, 2, 3, 4, and 5 were calculated to be 5.67 km, 5.25 km, 4.16 km, 3.23 km, and 

2.65 km, respectively. With the maximum flow rate of one production well at 50 kg/s, the 

number of wells including injection and production were calculated to be 2, 2, 3, 3, and 4 

for each case. Overall drilling costs were calculated to be $ 39.92, 36.67, 45.21, 39.48, 

and 48.35 million, respectively. The O&M cost of the reservoir field was estimated at 

$ 1.79 million per year for all the five cases. 

The Aspen Plus economic model directly evaluated the equipment purchase cost for the 

heating and cooling system, which is $ 0.2 and 0.69 million. The AACE recommended 

practice 16R-90 estimated another $ 2.34 million for installation, handling, and other 

indirect cost such as general facilities and overhead. Thus the total surface capital was 

estimated at $ 3.23 million. Annual pumping costs were estimated to $ 21,467, $ 23,715, 

$ 32,405, $ 47,431, and $ 64,729 for case 1, 2, 3, 4, and 5, respectively. Table 3.3 shows 

the surface O&M cost breakdown by taking case 2 as an example. Surface O&M costs 

for five cases were estimated to be $ 1.02, 1.02, 1.03, 1.05, and 1.06 million per year, 

respectively. Cost summary for all cases are shown in Table 3.4. On average, well capital 

accounts for 47.3% of the total investment, surface capital accounts for 3.7%, well field 

O&M accounts for 31.0%, and surface O&M accounts for 18.0%. So choosing a high 

temperature geothermal reservoir with a sufficient permeability is the most important 

factor for an economical GDHC project. 
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Table 3.3: Surface operation and maintenance cost estimation for case 2, in $/per year, 

except for total direct cost, which is in $. 

Item Calculation Value 

Total Direct Cost TDC 3,226,212 

Utility cost UC 23,715 

Labor cost Clabor 100,000 

Supervisory Csuper = 0.18 × Clabor 18,000 

Maintenance MC = 0.06 × TDC 193,573 

Operation supply Csupply = 0.009 × TDC 29,036 

Depreciation DC = 0.1 × TDC 322,621 

Tax and insurance TI = 0.032 × TDC 103,239 

Overhead OV = 0.708 × Clabor + 0.036× TDC 186,944 

Administration AD = 0.177 × Clabor + 0.009× TDC 46,736 

Operation and Maintenance 
O&M = UC + Clabor + Csuper + MC 

+ Csupply + DC + TI+ OV + AD 
1,023,864 

 

Table 3.4: Cost summary of the proposed GDHC system on WVU campus, based on five 

selected temperature and flow rate cases. 

 1 2 3 4 5 

Wells capital , 

×10
6 

 $ 
39.92 36.67 45.21 39.48 48.35 

Wells O&M, 

×10
6 

 $/year 
1.79 

Surface capital, 

×10
6 

 $ 
3.23 

Surface O&M, 

×10
6 

 $/year 
1.02 1.02 1.03 1.05 1.06 
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Finally, the LCOH for the proposed EGS based GDHC system on WVU campus was 

calculated with different production temperatures and flow rate, and in different 

economic scenarios. The results summary is shown in Table 3.5. 

Table 3.5: LCOH ($/MMBtu) for the WVU campus GDHC system, in different 

geothermal water characteristics (case 1, 2, 3, 4, and 5) and different economic scenarios 

(case I, II, and III) 

 1 2 3 4 5 

I 18.37 17.69 19.54 18.37 20.31 

II 16.98 16.29 18.14 16.97 18.92 

III 15.03 14.33 16.15 14.93 16.82 

 

With certain preferential regulations and incentives, and by not considering the surface 

O&M cost, LCOH in economic case III is lower than that in other cases. Among the five 

candidate pairs of production temperature and flow rate, case 2 has the lowest LCOH. 

Figure 3.7 shows the calculated LCOH for five temperature and flow rate cases in 

economic Case III. Figure 3.7 shows that although a larger mass flow rate can efficiently 

offset the temperature decrease and hence decrease drilling cost, it may also require more 

production wells to be drilled. For WVU case study, one injection well and one 

production well with a 148.9°C production temperature and a 50 kg/s flow rate provides 

the most economical geothermal energy. 
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Figure 3.7: LCOH for the WVU GDHC project with selected temperature and flow rate. 

Thus, for technical and economic consideration, the geothermal district heating and 

cooling system in West Virginia University should use one production and one injection 

well with a depth of 5.25 km for 148.9°C geothermal temperature. Maximum flow rate 

should be maintained at peak heating. The levelized cost of heating is estimated as 

$ 14.33/MMBtu, which is higher than cost of the current steam based heating and cooling 

system at $ 12/MMBtu. To further decease the LCOH, cascading applications to decrease 

the return temperature should be considered, such as geothermal based green house, or 

using geothermal heating for snow melting under pathways and for the tracks of the 

university personal rapid transition (PRT) system. In addition, increasing maximum flow 

rate of the production well is also recommended with improved well field technology in 

the near future. If a lower return temperature can be achieved at 30°C, and the maximum 

flow rate can be achieved at 65 kg/s, LCOH for the WVU GDHC system can be as low as 

$ 13.61/MMBtu. 

3.5.4 LCOH Functions and State Wide Estimation 

The geothermal gradient and the population density maps of WV were drawn by ArcGIS, 

as shown in Figures 3.8 and 3.9. 
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Figure 3. 8: Geothermal gradient map of WV, with a warmer color indicating a higher 

geothermal gradient. 

 

Figure 3.9: Population density map of WV, with a warmer color indicating a higher 

population density. 

WV geothermal gradient was estimated in the range of 12 to 30°C/km. For LCOH 

functions derivation, geothermal gradients were set at 14 to 30°C/km, with 1°C/km 

interval. For each gradient, the population densities were input to the cost model from 
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1,000 to 30,000 ppl/km
2
, and the LCOH results were recorded. The population density 

and LCOH results were fitted with Equation 3.18 by least square error analysis, to find 

the function constants a, b, and n. Results of a, b, and n for different geothermal gradients 

are shown in Table 3.6. 

Table 3.6: Least square fitting results of LCOH function constants a, b, and n for different 

geothermal gradients (G). 

G, °C/km a b n G, °C/km a b n 

14 22479.62 20 -0.97166 23 7270.58 12 -0.81079 

15 14552.61 18 -0.90838 24 7932.52 12 -0.82534 

16 14413.62 17 -0.90936 25 8533.13 12 -0.83772 

17 13187.28 16 -0.89739 26 9269.50 12 -0.8549 

18 19070.67 16 -0.95537 27 9952.80 12 -0.8708 

19 15327.95 15 -0.92264 28 10636.10 12 -0.8867 

20 39487.57 13 -1.05939 29 11319.40 12 -0.9026 

21 5803.75 12 -0.77378 30 12002.70 12 -0.9185 

22 6558.26 12 -0.79376     

 

There are 484 census tracts in West Virginia. Table 3.7 lists the 23 census tracts with the 

estimated LCOH below $ 30/MMBtu. GEOIDs are numeric codes that uniquely identify 

all administrative/legal and statistical geographic areas by the U.S. Census Bureau. 

Among all the census tracts in WV, the one (with GEOID 54061010101) in Morgantown 

has the lowest LCOH. Potential places are concentrated in Monongalia county, Kanawha 

county, and Cabell county. Figure 3.10 shows the census tracts map of WV with their 

calculated LCOH, in which a warmer color represents a lower LCOH. It is clear that the 

warm colored areas in Figure 3.10 is very much overlapped with the populated areas as 

shown in Figure 3.9, indicating that a populated area is essential to an economical GDHC 

project. 
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Table 3.7: Potential places for GDHC systems development in WV, whose LCOH is less 

than $ 30/MMBtu. 

GEOID LCOH County GEOID LCOH County 

54061010101 15.44204 Monongalia 54039000800 27.26394 Kanawha 

54061010202 20.95987 Monongalia 54061010201 27.32543 Monongalia 

54039001300 22.69788 Kanawha 54039000600 27.74855 Kanawha 

54061010102 23.76512 Monongalia 54039001200 27.97992 Kanawha 

54069000500 24.71884 Ohio 54061012000 28.28341 Monongalia 

54049020100 25.64488 Marion 54011001100 28.91448 Cabell 

54039010200 25.88468 Kanawha 54039000700 28.94942 Kanawha 

54061010901 26.04718 Monongalia 54011001300 29.17957 Cabell 

54039013500 26.32721 Kanawha 54097966700 29.38451 Upshur 

54011001400 26.69390 Cabell 54107000500 29.67028 Wood 

54011000500 26.87133 Cabell 54107000300 29.70306 Wood 

54011001200 26.96996 Cabell    
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Figure 3.10: Census tracts map of WV, coupled with their estimated LCOH, with a 

warmer color representing a lower LCOH. Lowest LCOH is found at Morgantown, WV. 

Finally, the LCOH functions were plotted by Matlab for gradients from 10 to 50°C/km 

and for population densities up to 30,000 ppl/km
2
, as shown in Figure 3.11. The LCOH 

decreases with increase in geothermal gradient and population density. The population 

density shows a strong negative effect on LCOH at any geothermal gradient, while the 

gradient only shows a negative effect on LCOH at a low population density. 
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Figure 3.11: Plot showing the variation of LCOH function with population density and 

geothermal gradient. 

3.6 Conclusion 

This part of the study first conducted a techno-economic evaluation of an EGS based 

geothermal district heating and cooling system in the Evansdale campus, West Virginia 

University. The geological conditions at WVU and also reports from the SMU 

Geothermal Lab stating elevated geothermal temperatures in WV, fortify the fact that 

WVU has the potential to develop a GDHC system technically. Hence, the use of a 

geothermal system as a substitute to the current steam system particularly for heating and 

cooling has been the primary objective of this part of the study. To achieve the proposed 

objective, an Aspen Plus heating and cooling model was designed and simulated to 

provide the campus heating and cooling demand at 22.9 MWth and 8.6 MWth. To optimize 

the levelized cost of energy, five pairs of temperature and flow rate of geothermal 

production water were investigated. For the WVU case, a doublet system with a 50 kg/s 

flow rate was calculated to be more economical than a triplet (with two production well, 
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at a flow rate of 100kg/s) or a higher order geothermal system. Geothermal wells were 

calculated to be drilled to a depth of 5.25 km to ensure a geothermal temperature at 

148.9°C. Maximum production flow rate at 50 kg/s was recommended to ensure lowest 

LCOH. On Average, well capital accounts for 47.3% of the total investment, surface 

capital accounts for 3.7%, well O&M accounts for 31.0%, and surface O&M accounts for 

18.0%. Well capital and O&M costs constitute the major portion of the overall 

investment. Drilling at a shallower depth might decrease the drilling cost significantly. 

However, it may require more production wells to ensure sufficient energy production. 

With certain tax preferential regulations and incentives, the LCOH for the WVU case was 

calculated at $ 16.29/MMBtu. In comparison with the current steam purchase price which 

is $ 12/MMBtu, surface O&M cost was excluded. The resulting LCOH was then 

calculated at $ 14.33/MMBtu. To further decease the LCOH, cascading applications to 

decrease the return temperature must be considered, which include geothermal based 

greenhouse heating or geothermal snow melting under pathways and for the tracks of the 

university personal rapid transition (PRT) system. Additionally, increase in the maximum 

flow rate of the production well along with improved well technology is recommended.  

From the cost model of WVU case study, it can be inferred that for a lower return 

temperature assumed at 30˚C and for maximum flow rate of 65 kg/s, the LCOH for the 

GDHC system is calculated at $ 13.61/MMBtu. 

Based on the cost model of WVU case study, LCOH was derived as a function of 

population density and geothermal gradient. The geothermal gradient in WV was 

calculated in the range of 12 to 30°C/km. There are 23 census tracts with the estimated 

LCOH below $ 30/MMBtu, which are concentrated in Monongalia county, Kanawha 

county, and Cabell county. Minimum LCOH is observed in Morgantown, where WVU is 

located. LCOH decreases with the increase in geothermal gradient and population density. 

The population density shows a strong negative effect on LCOH at any geothermal 

gradient, while the gradient only shows a negative effect at a low population density. 

. 
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Chapter 4 

Conclusions and Recommendations 

4.1 Significance and Conclusions 

Geothermal district heating and cooling has the potential to offset a considerable amount 

of fossil fuels consumption in the U.S. The GDHC system produces a more stable base-

load energy while produces much less greenhouse gas and particulates emissions than 

conventional heating and cooling systems. However, the literatures on studies analyzing 

the economic impacts of installing or retrofitting existing systems are few in number. 

This study is unique in that its purpose was to utilize supply analyses for the GDHC 

systems and determine an appropriate economic assessment of the viability and 

sustainability of the systems. The significance of this study is to present a cost model for 

the GDHC system which for the first time takes the energy market demand into 

consideration for a geothermal project. By showing the technical feasibility and economic 

benefits of the GDHC systems, this study bridges the gap between theoretic design of the 

system and popularizing it among the public. Developing GDHC systems will help the 

national energy industry restructure to a more renewable and sustainable oriented system, 

and protect the national energy security. By evaluating the opportunities to develop 

GDHC systems in the United States, the following conclusions were made by this study: 

 The western U.S. is much more geothermally active than the eastern part. The 

overall geothermal potential is estimated with a mean of 273,100 MWth, with 

levelized cost of heat (LCOH) as low as $ 6.74/MMBtu, at Weiser in Idaho. 

Usually, the LCOH of the identified hydrothermal resource is the cheapest. The 

reservoir stimulation cost causes the near hydrothermal EGS has a higher LCOH. 

The most expensive one is the undiscovered hydrothermal resource due to the 

high exploration cost. 



93 

 

 The undiscovered hydrothermal resources are predicted to be concentrated in the 

states of California, Nevada, Hawaii, Alaska, and Oregon. Future geothermal 

exploration activities should more on such areas. Among the undiscovered 

resources, over 60 GWth of geothermal energy is with a LCOH lower than natural 

gas based heating system ($ 9.2/MMBtu), and other 35 GWth of geothermal 

energy is with a LCOH lower than $ 25/MMBtu. 

 The hot impermeable surroundings of the hydrothermal reservoir can also be used 

for geothermal applications, which are known as the near hydrothermal EGS 

resources. Apart from the fact that the near hydrothermal EGS resources have a 

bit higher LCOH than their corresponding hydrothermal resources, this category 

is the least expensive EGS resource. With the fact that most of the high quality 

hydrothermal resources have already been developed for other geothermal 

applications, the near hydrothermal EGS resources are worth considering for 

expanding the current energy system. 

 The high temperature and high flow rate of the geothermal resources are the key 

parameters when choosing a GDHC site. The local energy demand is the most 

important factor for the success of a GDHC system. Long distances between 

source and supply of the hot water would cause severe heat loss, so the GDHC 

system must built close to the energy market. 

 For hydrothermal and near hydrothermal EGS, since the reservoir depth is fixed, 

the geothermal gradient effect on LCOH is not significant. Sensitivity analysis 

shows that local energy demand, reservoir temperature and project lifetime have 

negative effects on LCOH, while discount rate, well capital and surface capital 

have positive effects on LCOH. Increasing the energy demand is the most 

effective way to decrease LCOH. 

 A GDHC system based on West Virginia University campus is simulated as a 

preliminary case study which helps for detailed EGS based GDHC system 

research in the future. Results show that a doublet geothermal well system (one 

injection and one production), which is drilled to 5.25 km to ensure a geothermal 
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temperature of 148.9°C can provide sufficient energy for the Evansdale campus 

heating and cooling demand. Maximum flow rate of 50 kg/s should be maintained 

at peak energy demand. The LCOH is calculated as $ 14.33/MMBtu, which is 

higher than the current steam based system ($ 12/MMBtu). 

 With Southern Methodist University Geothermal Lab’s finding of the elevated 

geothermal temperature in WV, the LCOH of developing GDHC systems in WV 

is calculated for every census tract. The potential locations are concentrated in 

Monongalia County, Kanawha County, and Cabell County. Minimum LCOH is 

observed in Morgantown, where WVU is located. LCOH results show that the 

target area’s population density has a strong negative effect on LCOH at any 

geothermal gradient, while the gradient only has a negative effect on LOCH at a 

low population density. 

4.2 Recommendations 

This project serves as a basis about where to develop the GDHC systems. People should 

consider the following aspects when developing any practical GDHC project based on 

this research, since assumptions and simplifications have been used. 

 In this research, the GDHC system is designed to provide heating and cooling 

energy for all the people in the target location. Study of Bloomquist and Lund 

shows consumers still have great reluctance in accepting the GDHC systems, 

especially if an extra fee for retrofit is needed (Bloomquist and Lund, 2000). 

Therefore, a careful energy market evaluation is recommended. 

 To further extract energy from geothermal water, cascading applications are 

recommended to decrease the return temperature. If the return temperature of 

WVU case study decreases from 40 to 30°C, the LCOH can decreases by 5%. For 

EGS resources, any technique that can increase the maximum flow rate of the 

production well is also recommended. 
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 The WVU case study does not provide in depth study on reservoir availability for 

a GDHC system. Future work is recommended to focus on geologic study, 

lithology study, and seismic study in Morgantown area, to ensure the availability 

of a sufficient water flow rate for the system. 

 The cost model in this research is the first ever cost model of geothermal energy 

which is designed for the GDHC system. It is recommended to couple this cost 

model with the reservoir simulation software to enable a more comprehensive 

analysis of the GDHC system. It is also recommended to enable this cost model 

for other kinds of geothermal direct uses. 

 Population density varies with the size of the target area. This research assumes 

the target area to be one square mile when designing the distribution network. The 

effect of choosing a larger or smaller target area remains unknown. In one hand, it 

changes the population density, and hence the energy demand; on the other hand, 

it changes the surface distribution network. Further work is recommended which 

enables the facility of choosing an optimum target area for the GDHC system. 

This study proposed a novel method of analyzing the feasibility of geothermal energy, in 

addition to illustrating the need for environmentally-safe, renewable energy sources to 

meet legislation requirements. As demand for energy continues to rise, GDHC 

development may provide key assistance in providing a cleaner future on a global scale. 
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Appendix A: Geothermal Reservoir Characteristics and 

LCOH 

Table A-1: Identified Hydrothermal Resources and Near Hydrothermal EGS 
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Table A-2: Undiscovered Hydrothermal Resources 
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Appendix B: WV Geothermal Temperature Maps 
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