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Abstract: Soil salinization is one of the main causes of global desertification and soil degradation.
Although previous studies have investigated the hyperspectral inversion of soil salinity using machine
learning, only a few have been based on soil types. Moreover, agricultural fields can be improved
based on the accurate estimation of the soil salinity, according to the soil type. We collected field data
relating to six salinized soils, Haplic Solonchaks (HSK), Stagnic Solonchaks (SSK), Calcic Sonlonchaks
(CSK), Fluvic Solonchaks (FSK), Haplic Sonlontzs (HSN), and Takyr Solonetzs (TSN), in the Hetao
Plain of the upper reaches of the Yellow River, and measured the in situ hyperspectral, pH, and
electrical conductivity (EC) values of a total of 231 soil samples. The two-dimensional spectral index,
topographic factors, climate factors, and soil texture were considered. Several models were used
for the inversion of the saline soil types: partial least squares regression (PLSR), random forest (RF),
extremely randomized trees (ERT), and ridge regression (RR). The spectral curves of the six salinized
soil types were similar, but their reflectance sizes were different. The degree of salinization did
not change according to the spectral reflectance of the soil types, and the related properties were
inconsistent. The Pearson’s correlation coefficient (PCC) between the two-dimensional spectral index
and the EC was much greater than that between the reflectance and EC in the original band. In the
two-dimensional index, the PCC of the HSK-NDI was the largest (0.97), whereas in the original band,
the PCC of the SSK400 nm was the largest (0.70). The two-dimensional spectral index (NDI, RI, and
DI) and the characteristic bands were the most selected variables in the six salinized soil types, based
on the variable projection importance analysis (VIP). The best inversion model for the HSK and FSK
was the RF, whereas the best inversion model for the CSK, SSK, HSN, and TSN was the ERT, and the
CSK-ERT had the best performance (R2 = 0.99, RMSE = 0.18, and RPIQ = 6.38). This study provides a
reference for distinguishing various salinization types using hyperspectral reflectance and provides a
foundation for the accurate monitoring of salinized soil via multispectral remote sensing.

Keywords: soil electrical conductivity; variable projection importance; Hetao Plain; salinization; soil
degradation; soil quality

1. Introduction

Salinization causes a decline in soil fertility, deteriorates the ecological environment,
and is one of the main factors restricting the sustainable development of agricultural
production and the ecological environment [1–3]. Saline soils cover nearly one billion
hectares of land in more than 100 countries [4], and it is estimated that 50% of the globe’s
arable land will be salinized by 2050 [5]. This situation has hindered the realization of
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sustainable development goals across the world, and salinization has become a worldwide
ecological problem [6,7]. The management and utilization of salinized soil is very important
for regional food production, ecological security, and sustainable agricultural development.

In particular, saline soils account for about 10% of China’s national land area [8]. The
Hetao Plain in the upper reaches of the Yellow River is an important location for grain and
sugar production, for both China and the rest of the world. However, long-term irrigation
by the Yellow River, coupled with the high salt content of the parent material, fluctuations
in the groundwater level, droughts, and strong evaporation have increased the area of
saline–alkaline land and the degree of salinization in the region [9]. Thus, salinization has
become a major obstacle for appropriate land use in Hetao Plain [10], and the study of the
salinization rates and characteristics is crucial for the effective prevention of salinization
and improvement in regional productivity.

Different soil types determine the management measures for crops and agriculture.
Many scholars have carried out research addressing the salinization threat to agriculture
and salinization distribution, as well as establishing inversion models [11,12]; they have
proposed the implementation of targeted techniques (geostatistical methods) for determin-
ing spatial variations in soil salinity [13]. The electrical conductivity (EC) of soil is closely
related to the degree of salinity and is widely used in salinization-related studies [14]. For
different types of saline–alkaline soil, establishing a correlation equation between the EC
and the degree of soil salinity and alkalinity and combining the spatial distribution of the
salinity and alkalinity with agricultural management, such as irrigation and fertilization
regimes, have attracted increasing attention [15].

Remote sensing has been successfully applied for the monitoring of EC, ranging from
hyperspectral to multispectral analysis [16–18]. Hyperspectral remote sensing technology
is an important method for monitoring the physical and chemical properties of soil because
of its strong dynamics, high resolution, and continuous band. The field-measured hyper-
spectrum has been proven to retrieve soil salinity data with high accuracy [19]. However,
soil salinization inversion studies in different regions vary in terms of the best model,
spectral processing method, and variable screening method [20]. In addition, previous
salinity inversion models have only used one soil type with a specific degree of salinity
together with a specific salinization mechanism [21,22]. As a result, there is a lack of clarity
on the variation in the spectral characteristics among saline soils with different degrees of
salinity and salinization mechanisms, as well as the suitability of specific models for each
soil type.

Soil has a high degree of spatial heterogeneity, and the soil moisture, texture, and
depth will all affect the soil salinity. Therefore, the addition of auxiliary variables improves
the accuracy of spectral prediction models [23,24]. However, to date, few scholars have
added, for example, soil texture and depth as covariates to the models [23]. Moreover, the
studies that have used modeling to investigate the response of environmental variables to
soil salinization [25] did not consider whether these variables maintained consistent high
efficiency under small-scale or under relatively uniform conditions.

For an accurate estimation of salinization, we selected six cultivated saline soil types
for this research. Our main objectives were to (1) explore the response of spectra to various
soil types with specific properties, EC values, and salinization mechanisms; (2) study
the feasibility of the measured hyperspectrum to estimate soil EC values; (3) verify the
inversion accuracy of different models in relation to soil type; and (4) propose a method
for the construction of spectral quantitative inversion models based on soil type and its
applicability for saline soils with various degrees of salinity and a wide range of properties.

2. Materials and Methods
2.1. Study Area

Hetao Plain (40◦10′~41◦20′N, 106◦10′~112◦15′E) is located in the center of the Inner
Mongolia Plateau and along the Yellow River, between the Inner Mongolia Autonomous
Region and the Ningxia Autonomous Region, and has a total area of about 28,729 km2 [26].
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It is an important grain producing area in northwest China. However, it suffers from sparse
precipitation and strong evaporation (Figure 1d). The Yellow River Diversion Project has
been flooded for a long time; despite this, the drainage in this area is poor, which has
resulted in shallow groundwater, serious secondary salinization of soil, and an extremely
fragile ecology. Under such conditions, the saline soil area of the Ningxia Yellow River
Diversion irrigation area in Hetao Plain was 2.2755 million mu [27].
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Figure 1. Location of the sampling sites in the study area. (a) Digital elevation model (DEM) of
Ningxia autonomous in China; (b) distribution of sampling points; (c) variations in soil textures in
the study area; (d) mean annual precipitation (MAP) and mean annual temperature (MAT) of the
sampling sites. HSK is Haplic Solonchaks, SSK is Stagnic Solonchaks, CSK is Calcic Sonlonchaks,
FSK is Fluvic Solonchaks, HSN is Haplic Sonlontzs, and TSN is Takyr Solonetzs.

We considered factors such as the soil surface characteristics, pH conditions, soil types,
and land use patterns in the study area. Six typical saline–alkaline soil types in the upper
reaches of the Yellow River (Ningxia section) were selected, including Haplic Solonchaks
(HSK), Stagnic Solonchaks (SSK), Takyr Solonetzs (TSN), Haplic Sonlontzs (HSN), Fluvic
Solonchaks (FSK), and Calcic Sonlonchaks (CSK). The HSK is found close to the diversion
channel, where because of lateral seepage and blockage of the drainage ditch, the ground
water level rises, and the salinization is aggravated. The SSK area is located on low-lying
terrain, with poor drainage and low water resource utilization efficiency, which has led to
soil salinization. Sodium carbonate and sodium bicarbonate are the main salts in the TSN,
and the CO3

2− and HCO3
− content accounts for more than 80% of the total anions [28].

The surface of the TSN comprises salt crusts with gray–white turtle cracks that are about
1 cm thick [29]. The soil clay content in the HSN is high (Figure 1c), and the salinization
is aggravated by the non-standardized agricultural cultivation. The FSK is a low terrain



Remote Sens. 2022, 14, 5639 4 of 17

close to the Yellow River, with poor drainage, and the soil contains minerals from the
Yellow River. The parent material of the CSK has a high salt content, and there is a layer of
impermeable calcium deposits in the soil profile [30].

2.2. Data Sources
2.2.1. Hyperspectral Data Acquisition and Preprocessing

Soil spectra were measured after the harvest at each sampling site. The CSK was
collected on 10 to 11 March 2022, the SAS was collected on 30 March 2022, and the other
samples were collected from 31 March to 10 April 2022. The soils were sampled using a
grid method (Figure 1). Soil spectroscopy was conducted at each sampling site using the
Analytical Spectral Devices (ASD) FieldSpec4 spectrometer (Analytical Spectral Devices,
Inc., Boulder, CO, USA). The detection band was 350–2500 nm, and the resampling interval
was 1 nm. The resolution for 350–1000 nm was 3.5 nm, for 1000–1500 nm it was 10 nm,
and for 1500–2100 nm it was 7 nm. The time of measurement was 10:00–14:00 on a sunny
day, the spectrometer was facing vertically downward, and the probe was about 30 cm
perpendicular to the surface. Standard whiteboard correction was performed before each
collection, each sample point was measured five times, and the average value was taken as
the spectral reflection value of the sample point.

Preprocessing: (1) The abnormal spectral curve removal, breakpoint correction, and
the measured field spectral data were reperformed using in ViewSpec Pro software (A click
view graph was used to delete the abnormal curve. The ASD spectrometer has three sensors,
which have varying responsivity under different environmental function temperatures and
warm-up times. Different optical fibers collect spectra of samples at different locations,
and the splice correction function in the software was required to correct the data). (2) To
eliminate instrument noise and environmental background interference, the edge bands
with excessive noise (350–399 and 2401–2500 nm) were removed. (3) The Savitzky–Golay
(polynomial order 2, number of smoothing points 9) method was used to smooth and
denoise the 400–2400 nm data. (4) The spectral data of 400–2400 nm were resampled at
10 nm intervals, and 201 bands were obtained.

The bands with the largest Pearson’s correlation coefficient (PCC) between the EC
and the bands of blue (455–492 nm), green (492–577 nm), red (622–770 nm), near-infrared
(770–1050 nm), swir1 (1500–1750 nm), and swir2 (2080–2350 nm) were selected as band
modeling factors for use in the subsequent modeling.

2.2.2. Soil Sample Collection and Preprocessing

After spectral collection, the unmixed soil samples from 0 to 20 cm were collected at
the same points using a soil drill and stored in sealed bags. A handheld GPS was used to
record the longitude and latitude of each point, the sampling date, and the corresponding
number of the soil sample and spectrum, together with information regarding the surface
salt aggregation and land use pattern. The soil moisture content (%) was determined using
the oven-drying and weighing method. Impurities such as gravels and weed remains were
removed from the collected soil samples. After natural air-drying and grinding, the 1:5 soil:
water mixture was prepared in order to measure the EC using an EC meter (FE38-Standard,
Mettler Toledo, Switzerland). A total of 231 soil samples were collected: 53 from the CSK,
26 from the FSK, 30 from the SSK, 37 from the HSK, 29 from the HSN, and 56 from the TSN.
According to the definition of Brady and Weil [31], the soils were grouped into five salinity
levels: non-saline (EC < 0.4 ms/cm), slightly saline (0.4 ≤ EC <0.8 ms/cm), moderately
saline (0.8≤ EC < 1.6 ms/cm), strongly saline (1.6≤ EC < 2.4 ms/cm), and extremely saline
(EC ≥ 2.4 ms/cm).

2.2.3. Environmental Variables

The climatic data were obtained from the National Meteorological Information Center.
(http://data.cma.cn (accessed on 20 September 2020)). The mean annual temperature
(MAT) and mean annual precipitation (MAP) in Ningxia for the last 40 years (1978–2018)

http://data.cma.cn
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were determined based on records from 10 stations. The preprocessed meteorological data
were then used in ArcGIS 10.4 to generate the MAP and MAT of the sampling points in
Ningxia using inverse distance weighted (IDW) in Raster Interpolation module.

Terrain data with a spatial resolution of 12.5 m were obtained from NASA’s Alaska
Satellite Facilities Division (http://search.asf.alaska.edu/#/ (accessed on 15 July 2022)).
In ArcGIS 10.4, the “Extract Multivalues to Points” tool in Spatial Analyst Tools was used
to extract the digital elevation model (DEM) of each sampling point, as well as the slope
degree, slope aspect, plane curvature, profile curvature, and the topographic wetness
index (TWI).

The soil texture data, i.e., the sand, silt, and clay content in the surface layer (g/kg)
with a spatial resolution of 1 km, were collected from the basic attribute dataset of China’s
high-resolution National Soil Information Network provided by the National Earth System
Science Data Center (http://www.geodata.cn (accessed on 16 October 2021)), and the soil
depth to bedrock data were collected from [32].

2.3. Selection of the Optimal Spectral Index for Estimating Soil Salinity

The optimal band combination algorithm is able to fully consider the correlation infor-
mation between bands and reduce interference from irrelevant wavelengths. In addition,
the numerical two-dimensional contour map of the correlation between spectral index
and salinity can provide comprehensive information regarding the ability of two different
wavelength combinations to predict soil properties [33]. It has been pointed out that the
second derivative of spectral reflectance is the best way to calculate the two-dimensional
salinity index [34]; therefore, 2D correlation maps after the second derivative of reflectance
were used to determine the relationship between the difference index (DI), the ratio index
(RI), the normalized index (NDI), and the soil EC (Table 1).

Table 1. Reference overview of the studies on spectral indices and formulas.

Acronym Spectral Indices Formula Reference

DI Difference Index Ri − Rj [35]
RI Ratio Index Ri

Rj
[35]

NDI Normalized Index Ri−Rj
Ri+Rj

[36]

Ri and Rj in the formula belong to the reflectance after the second derivative of any two wavelengths between
400 and 2400 nm, and Ri 6= Rj . For each spectral index, the wavelength combination with the largest correlation
with soil EC was extracted and deemed to be the optimal band combination.

2.4. Method
2.4.1. Features Selection

The variable projection importance analysis (VIP) is a variable screening method based
on partial least squares regression (PLSR) [37]. For a given independent variable, the VIP
value not only represents the effect of the independent variable on the dependent variable
but also takes into account the indirect influence of other independent variables on the
dependent variable. The calculation of the VIP is:

VIPj =

√
p ∗∑F

f=1 SSYf ∗Wj f
2

SSYtotal ∗ F

where p is the number of independent variables, F is the total number of principal compo-
nents, f is the principal component, SSYf is the sum of squared variances explained by the f
principal component, SSYtotal is the sum of squares of dependent variables, and Wjf

2 gives
the importance of the j variable in the f principal component. The larger the value of VIPj,
the stronger the explanatory power of the independent variable to the dependent variable.
When the VIP value of the independent variable is greater than 1, the independent variable
is judged as an important independent variable [38].

http://search.asf.alaska.edu/#/
http://www.geodata.cn
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2.4.2. Modeling Method and Model Evaluation Index

The modeling methods were PLSR, random forest (RF), extremely randomized trees
(ERT), and ridge regression (RR). The prediction performance of the model was evaluated
using the fivefold cross validation method. The stability and prediction accuracy of the
model were evaluated using the determination coefficient (R2), root mean square error
(RMSE), and the ratio of performance to interquartile distance (RPIQ). For the model calcu-
lation process, the GridSearchCV method was selected for hyperparameter tuning, i.e., the
main parameters were found using the grid search method, and the other parameters were
the default values of the Scikit–Learn tool kit. GridSearchCV ensured that the parameter
with the highest precision could be found within the specified parameter range, where the
PLSR search space was param_grid = {‘n_components’: range (1,20)}, RF: ‘n_estimators’:
range (2,50,1), ‘max_features’: (2, 4, 6, 8), ‘max_depth’: range (2, 15, 2); ERT: ‘n_estimators’:
range (1, 30, 1), ‘max_depth’: range (2, 15, 1), and RR: alphas = (0.01, 0.1, 0.5, 1, 5, 7, 10,
30, 100).

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (1)

where yi and ŷi is the observed value and predicted value of the test sample, respectively,
yi is the average of sample observations, and n is the number of predicted samples.

RMSE =

√
1
N ∑n

i=1(yi − ŷi) (2)

where ŷi is the predicted value of the sample, and yi is the measured value.

RPIQ =
IQ

RMSE
(3)

where IQ is the difference between the third quartile (Q3) and the first quartile (Q1) of the
sample observation value, and RMSE is the root mean square error.

The PLSR [39] model is a stoichiometric statistical model, which can solve the multi-
collinearity problem among independent variables, realizing data dimensionality reduction,
information synthesis, and screening. Full cross validation was used in the modeling process.

The RF [40] is a machine learning algorithm for classification and regression. Based on
decision tree learning and a simple average algorithm, the RF selects N samples according
to the number of nodes (M) in each binary tree and the bootstrap method to construct
the decision tree and then uses unselected samples to predict each tree. Because the RF
randomly selects features and variables, overfitting can be avoided.

The ERT [41] is an ensemble learning method based on decision trees. If there is an
initial training set of size N, in the extreme random tree, each decision tree is trained based
on the whole dataset, which ensures the utilization of training samples and reduces the
final prediction bias to a certain extent.

The RR [42] is an improved least squares method, which provides good results in ill-
conditioned data processing and feature information extraction. It is also a new quantitative
spectral analysis method.

3. Results
3.1. Descriptive Statistics of Measured Soil Attributes

According to the statistics of the properties of the six salinized soil types, the range of
the EC values in the CSK was the largest, from 0.1 to 8.8 ms/cm, whereas for SSK the range
of the EC values was the smallest, though relatively stable, at 1~3 ms/cm (Figure 2). The
pH value of the TSN was the highest, followed by the HSK. The soil EC and pH levels did
not change regularly, and a small EC had a higher pH (Table 2). The SSK had the highest
SOM, whereas the TSN had the lowest. The SMC of the FSK was the highest, followed by
the CSK, whereas that of the HSN was the lowest.



Remote Sens. 2022, 14, 5639 7 of 17

Remote Sens. 2022, 14, 5639 7 of 19 
 

 

The RR [42] is an improved least squares method, which provides good results in ill-

conditioned data processing and feature information extraction. It is also a new quantita-

tive spectral analysis method. 

3. Results 

3.1. Descriptive Statistics of Measured Soil Attributes 

According to the statistics of the properties of the six salinized soil types, the range 

of the EC values in the CSK was the largest, from 0.1 to 8.8 ms/cm, whereas for SSK the 

range of the EC values was the smallest, though relatively stable, at 1~3 ms/cm (Figure 2). 

The pH value of the TSN was the highest, followed by the HSK. The soil EC and pH levels 

did not change regularly, and a small EC had a higher pH (Table 2). The SSK had the 

highest SOM, whereas the TSN had the lowest. The SMC of the FSK was the highest, fol-

lowed by the CSK, whereas that of the HSN was the lowest. 

 

Figure 2. Numerical distribution of the sample points of different soil types. HSK: Haplic Solon-

chaks, SSK: Stagnic Solonchaks, CSK: Calcic Sonlonchaks, FSK: Fluvic Solonchaks, HSN: Haplic 

Sonlontzs, and TSN: Takyr Solonetzs. 

Table 2. Summary statistics of the measured soil attributes of different soil types. 

Soil 

Types 

EC pH SMC SOM 
Soil Texture 

(0–30) 
Mean (Min–

Max) 
SD 

Mean (Min–

Max) 
SD Mean (Min–Max) SD 

Mean (Min–

Max) 
SD 

HSK 1.3 (0.2–6.1) 1.2 8.3 (7.6–9.6) 0.5 12.8 (1.1–24.6) 6.5 13.3 (2.6–34.8) 7.8 Silt loam 

CSK 1.1 (0.1–8.8) 2.1 8.5 (7.3–9.1) 0.4 12.5 (2.1–26.0) 7.4 7.6 (1.5–34.6) 5.4 Loam 

SSK 2.4 (0.4–7.6) 1.5 7.9 (7.6–8.7) 0.3 16.9 (2.4–26.1) 6.4 25.2 (8.2–44.7) 6.8 Clay loam 

FSK 1.6 (0.1–6) 1.4 8.0 (7.5–8.5) 0.2 22.6 (5.4–39.8) 6.4 20.4 (7.8–28.2) 5.0 Silty clay loam 

HSN 0.9 (0.1–5.0) 1.0 8.3 (7.8–9.0) 0.3 19.2 (11.0–24.11) 2.9 17.3 (8.8–28.6) 4.5 Clay loam 

TSN 0.7 (0.2–3.9) 0.8 8.7 (7.9–9.9) 0.4 16.2 (1.4–35.9) 5.6 12.4 (1.1–23.6) 5.8 Clay loam 

SOM is soil organic matter (g/kg); SMC is soil moisture content (%). 

3.2. Hyperspectral Characteristics of Different Types of Salinized Soils 

The pattern of the spectral curves tended to be consistent across the different soil 

types (Figure 3). Across the whole spectrum, i.e., 400–2400 nm, the spectral reflectance at 

400–650 nm increased fastest; at 650–1400 nm, it increased steadily, and it fluctuated at 

2100–2400 nm. The water absorption valleys were around 1400, 1950, and 2200 nm, with 

the most obvious one at 1900 nm. 

Figure 2. Numerical distribution of the sample points of different soil types. HSK: Haplic Solonchaks,
SSK: Stagnic Solonchaks, CSK: Calcic Sonlonchaks, FSK: Fluvic Solonchaks, HSN: Haplic Sonlontzs,
and TSN: Takyr Solonetzs.

Table 2. Summary statistics of the measured soil attributes of different soil types.

Soil Types
EC pH SMC SOM

Soil Texture
(0–30)

Mean
(Min–Max) SD Mean

(Min–Max) SD Mean (Min–Max) SD Mean
(Min–Max) SD

HSK 1.3 (0.2–6.1) 1.2 8.3 (7.6–9.6) 0.5 12.8 (1.1–24.6) 6.5 13.3 (2.6–34.8) 7.8 Silt loam
CSK 1.1 (0.1–8.8) 2.1 8.5 (7.3–9.1) 0.4 12.5 (2.1–26.0) 7.4 7.6 (1.5–34.6) 5.4 Loam
SSK 2.4 (0.4–7.6) 1.5 7.9 (7.6–8.7) 0.3 16.9 (2.4–26.1) 6.4 25.2 (8.2–44.7) 6.8 Clay loam
FSK 1.6 (0.1–6) 1.4 8.0 (7.5–8.5) 0.2 22.6 (5.4–39.8) 6.4 20.4 (7.8–28.2) 5.0 Silty clay loam
HSN 0.9 (0.1–5.0) 1.0 8.3 (7.8–9.0) 0.3 19.2 (11.0–24.11) 2.9 17.3 (8.8–28.6) 4.5 Clay loam
TSN 0.7 (0.2–3.9) 0.8 8.7 (7.9–9.9) 0.4 16.2 (1.4–35.9) 5.6 12.4 (1.1–23.6) 5.8 Clay loam

SOM is soil organic matter (g/kg); SMC is soil moisture content (%).

3.2. Hyperspectral Characteristics of Different Types of Salinized Soils

The pattern of the spectral curves tended to be consistent across the different soil
types (Figure 3). Across the whole spectrum, i.e., 400–2400 nm, the spectral reflectance
at 400–650 nm increased fastest; at 650–1400 nm, it increased steadily, and it fluctuated at
2100–2400 nm. The water absorption valleys were around 1400, 1950, and 2200 nm, with
the most obvious one at 1900 nm.
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At 400–1400 nm, HSN’s reflectance was the highest, FSK’s reflectance was the lowest,
and the reflectance of the HSK and TSN had the least difference. At 800–1400 nm, every
soil type had a distinct reflectance, in the following order HSN > CSK > HSK > TSN > SSK
> FSK. As the reflectance of the CSK was greater than that of the HSN after 1400 nm, it can
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be used to distinguish between the various salinized soil types. Regarding the shape of
the curve, the slope of the reflectance curve of the CSK was the highest of all the soils at
400–700 nm, whereas the slopes of the reflectance curves of the other soils were roughly
the same. The absorption depth and area of the water absorption characteristic zones
were stronger for the FSK and HSN, at almost 1400 nm and 1900 nm, respectively, than
for the other salinized soil types, and the absorption intensity of the SSK was the weakest.
Throughout the whole spectrum, the FSK had the lowest reflectance, and the HSK and TSN
spectra curves had similar patterns.

The spectral curves of the six salinized soils with different degrees of salinization
continuously increased in the visible band (Figure 4), and the higher the salinization degree,
the higher the reflectance. The increase in the reflectance of the HSK with the increase
in salinization degree was at 400–650 nm, but at 650–1400 nm, the reflectance of the non-
salinized, moderately salinized, strongly salinized, and extremely salinized soils were
almost coincident, and after 1400 nm, the curves changed irregularly. The CSK’s spectral
reflectance increased with the increase in the wavelength over the whole spectrum. The
reflectance of the moderately salinized soil was the highest, and that of the slightly salinized
soil was the lowest, whereas the reflectance of the non-salinized and extremely salinized
soils was similar at 400–1300 nm. After 1400 nm, the reflectance followed the order of
moderately > non > extremely > slightly. The spectral reflectance of the SSK showed
regular, gentle, and consistent changes at various degrees of salinization except for the
moderate and strongly salinized soils. At 1400 and 1900 nm, the spectral reflectance of the
moderate and extremely salinized soils of the SSK showed peaks, whereas the non-salinized,
slightly salinized, and strongly salinized soils showed absorption valleys. At 1200–1900 nm,
the difference between the hyperspectral reflectance curves of the different salinization
degrees was the largest, and it was easy to distinguish the hyperspectral reflectance curves
of soils with different EC values. The reflectance of the various salinization degrees of
the FSK were close to each other with no regularity. Among the reflectance of different
salinization degrees of the HSN, the non-salinized and slightly salinized showed regular
changes, whereas the reflectance of the moderately and extremely salinized were similar at
400–1300 nm, and the extremely salinized reflectance fluctuated greatly after 1400 nm. The
absorption valley of the HSN soils was obvious and close to 1900 nm. The reflectance of
the different salinization degrees of the TSN showed regular changes between 400 nm and
1900 nm, and the higher the EC value of the soil, the stronger the reflectance. However, the
spectral difference between the slightly and moderately salinized soils was small.
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3.3. Correlation Coefficient between EC and Reflectance of Salinized Soil Types

The correlation between the spectrum and the EC of all the salinized soils of the
different types was analyzed (Figure 5). The PCC between the reflectivity and conductivity
of the HSN was almost unchanged at 400–1300 nm, but after 1300 nm, the fluctuation
became larger. The HSN had an obvious “valley” shape at around 1400 nm and 2000 nm,
followed by the SSK and FSK, for which the valleys were weak. Hardly any “valley” shape
could be seen for the TSN in the whole band range. The EC and reflectance of the SSK
and TSN were positively correlated in the whole band, and the correlation decreased over
the spectrum. The EC values and reflectance of the SAS were negatively correlated as a
whole, and the correlation between the EC values and the reflectance in the CSK, HSN,
and HSK decreased over the whole spectrum (the absolute value decreased initially and
then increased). The correlation became negative for the CSK, HSK, and HSN at close to
1100 nm, 1300 nm, and 1900 nm, respectively. The correlation between the EC values and
the reflectance of these three soil types fluctuated after 1900 nm, with the most fluctuations
observed in the HSN. In terms of the strength of the correlation, the correlation between
the EC values and the reflectivity in the SSK was the strongest at 400–800 nm, followed by
the TSN at 1000–2200 nm. The TSN had the largest correlation, whereas the HSK had the
smallest. The correlation between the whole range of EC values and the reflectance was
TSN > SSK > FSK > HSN > CSK > HSK. The SSK had the strongest positive correlation (0.70)
with the reflectance at 400 nm, whereas the CSK had the strongest negative correlation
(−0.45) with the reflectance at 1990 nm.
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Figure 5. Correlation coefficient between the EC values and the reflectance spectra of various salinized
soil types.

3.4. Relationship between Soil EC and Spectral Parameters

The soil EC values and the salinity index had a significant correlation (Figure 6). The
HSK–NDI, CSK–RI, SSK–DI, FSK–RI, HSN–RI, and TSN–NDI provided the best results,
with a maximum absolute PCC of 0.9651, 0.7751, 0.8072, 0.8459, 0.8731, and 0.7412, respec-
tively. The correlation between the HSK–NDI and the EC values was the strongest, and
its explicit expression was [(R1600 nm − R1410 nm)/(R1600 nm + R1410 nm)]. Overall, the best
bands of the FSK–DI and TSN–DI were concentrated, whereas the other best bands were
scattered, mostly in the form of grids and dots.
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Figure 6. Two-dimensional correlation coefficients between the EC values and the salinity index under
two derivative orders (The x and y axis represent the wavelength 400–2400 nm. The right-side color bar
indicates the color of the PCC values. The colors dark red and dark blue represent a relatively high PCC
(red for positive and blue for negative) between the measured EC and the band combinations).
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3.5. Optimal Factor Selection for Soil EC Inversion

In the case of the six kinds of saline soils, the number of independent variables selected
from 21 independent variables using the VIP were 7, 8, 9, 4, 8, and 9, respectively, as shown
in Figure 7.
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3.6. Model Establishment

Taking the parameters obtained from the VIP screening as independent variables and
the soil EC values as dependent variables, the PLSR, RF, ERT, and RR were used to build
quantitative inversion models of the soil EC. The optimal hyperparameters of the model are
shown in Table 3. Of the four models, the ERT had the best and most stable performance,
followed by the RF, PLSR, and RR (Table 4). The most effective inversion model differed
according to the saline soil type. The RF was the best model for the HSK and FSK, whereas
the ERT was the best for the CSK, SSK, HSN, and TSN. Of the six saline soils, the results of
the four inversion models for the HSN were the most stable with an R2 ranging from 0.80 to
0.94 and an RMSE averaging 0.32. The difference in the effect of the models was the largest
when applied to the TSN, ranging from the PLSR with an R2 = 0.50 to the ERT (R2 = 0.92),
whereas for the HSK all the models showed similar results with an R2 at 0.52–0.61. The ERT
model performed best on the CSK (R2 = 0.99, RMSE = 0.18, and RPIQ = 6.38). Overall, the
ERT had the best prediction ability, with an average RMSE of 0.37, which was the lowest of
the four models. Moreover, the training time for ERT was shorter than for the RF. Therefore,
it can be concluded that the ERT has a good ability to predict the soil EC value.

Table 3. Optimal hyperparameters of the machine learning methods based on hyperspectral data.

Category Method Optimal Hyperparameters

HSK

PLSR n_components = 1
RF n_estimators = 42, max_depth = 2, max_features = 2, random_state = 1

ERT n_estimators = 17, max_depth = 2, random_state = 1
RR alpha = 0.01
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Table 3. Cont.

Category Method Optimal Hyperparameters

CSK

PLSR n_components = 10
RF n_estimators = 45, max_depth = 2, max_features = 6, random_state = 1

ERT n_estimators = 15, max_depth = 4, random_state = 1
RR alpha = 7

SSK

PLSR n_components = 2
RF n_estimators = 47, max_depth = 2, max_features = 6, random_state = 1

ERT n_estimators = 24, max_depth = 4, random_state = 1
RR alpha = 0.5

FSK

PLSR n_components = 1
RF n_estimators = 19, max_depth = 6, max_features = 4, random_state = 1

ERT n_estimators = 2, max_depth = 5, random_state = 1
RR alpha = 0.5

HSN

PLSR n_components = 4
RF n_estimators = 19, max_depth = 8, max_features = 6, random_state = 1

ERT n_estimators = 3, max_depth = 4, random_state = 1
RR alpha = 10

TSN

PLSR n_components = 1
RF n_estimators = 5, max_depth = 4, max_features = 8, random_state = 1

ERT n_estimators = 18, max_depth = 3, random_state = 1
RR alpha = 100

Table 4. Inversion model of soil EC value based on hyperspectral data.

Method
HSK CSK SSK

R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ

PLSR 0.56 0.74 1.80 0.84 0.82 1.62 0.78 0.65 2.05
RF 0.61 0.69 1.93 0.93 0.54 2.46 0.79 0.62 2.15
ERT 0.60 0.71 1.87 0.99 0.18 6.38 0.88 0.46 2.89
RR 0.52 0.78 1.71 0.75 1.04 1.28 0.72 0.72 2.85

Method
FSK HSN TSN

R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ

PLSR 0.81 0.60 2.22 0.89 0.33 4.03 0.50 0.57 2.33
RF 0.93 0.36 3.69 0.91 0.29 4.59 0.89 0.27 4.93
ERT 0.90 0.43 3.09 0.94 0.24 5.54 0.92 0.22 6.05
RR 0.77 0.66 2.01 0.80 0.43 3.09 0.73 0.42 3.17

The scatter plots of the soil salinity measured and predicted by the best model, i.e., the
ERT, showed that the CSK–ERT model performed optimally in linking the independent
variables with the soil EC value (Figure 8).
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4. Discussion
4.1. Spectral Characteristics of Different Types of Soil

The pattern of the reflection curves of the different saline soil types presented similar
morphological characteristics (Figure 3) at 1400 nm and 1900 nm, with an obvious ever
present water vapor absorption band, caused by the double or combined vibration fre-
quency of the soil water molecules [43]. However, the size of the hyperspectral reflectance
differed between the soils, because of the differences in soil formation conditions and the
parent materials, i.e., the soil mineralogy factors that control the spectral characteristics.
With the exception of the SSK, the size of the reflectance did not regularly change with the
degree of salinity (Figure 4) and differed from the values reported from other locations,
such as the Ebinur Lake oasis [18] and Zhenlai County in China [44] and the Urmia Lake
in Iran [45]. This can be attributed to the relatively high pH but low EC values in some
parts of our study area. An example of this can be seen in Table 2: pHmin = 7.3 and the
corresponding ECmin = 0.1, which directly led to the irregular changes in the spectral
characteristic curve of the salinized soil at different degrees of salinity. Furthermore, we
analyzed various soil types, whereas other studies only considered one soil type.

The different correlation properties between the spectral reflectance and the EC values
of different saline soil types (Figure 5) can be attributed to differences in the salinization
mechanisms and the spatial heterogeneity of the salinity [46]. The higher maximum
correlation coefficient between the two-dimensional spectral index and the EC values
compared with that between the original band reflectance and the EC after the second
derivative (Figure 6) indicated that the spectral index reduced the influence of noise to a
large extent, took account of the remote sensing mechanism, and could dynamically extract
soil EC spectral information [47,48].

4.2. Inversion of Soil Salinity Based on VIP Feature Screening

Soil salinity levels are controlled by various environmental factors. Therefore, the
robustness of the model can be improved by removing potentially irrelevant environmental
variables [49]. Among the 21 environmental covariates initially considered in this study,
the two-dimensional spectral index (RI, NDI, and DI) had the highest selection frequency
of the six saline soil types under the VIP selection (Figure 7), similar to the findings of
previous studies [50]. After the two-dimensional spectral index, the hyperspectral bands
had the highest selection frequency among the soil types, whereas the elevation factors,
climate variables, and soil texture were included to a lesser extent. Despite the importance
of climate and topography as non-negligible soil formation factors and in determining the
direction and rate of solute migration in soils, in addition to controlling the soil moisture
regime and water temperature which directly control solute distribution in soils [51,52],
of the VIP screening model factors, the terrain factors TWI and DEM were selected as
modeling factors for the HSK and HSN, respectively, whereas the terrain factors in the
other soil types failed to pass the screening. This indicates that climate and topography
have little influence on the reflectance of the various salinity degrees of a specific soil type.
Nevertheless, all our sampled soils were cultivated on relatively flat topography, with
low heterogeneity. The relative importance of climate variables was even lower than that
of terrain, with the exceptions of the MAT and MAP for the CSK. However, none of the
climate variables passed the screening, because the CSK is in the south of the Hetao plain,
where the rainfall is far greater than it is in the other northern locations (Figure 1).

The machine learning model was significantly more accurate than the linear model
(Table 4). In general, the ERT model performed best, followed by the RF and PLSR, whereas
the RR model was the least effective, comparable with previous research results [53]. The
reason for this is that the machine learning algorithm (random forest) introduced random
attribute selection during model training and extracted data based on randomness and
differences, which improved the accuracy of decision making [54]. The PLSR model
could correct the collinearity problem [55]. However, the PLSR fitting also reduced the
dimension of the data, leading to the loss of point data information to a certain extent.
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Thus, the inversion accuracy decreased. As a multivariate linear regression model, the
RR also achieved good results in the inversion of some of the saline soils (CSK, FSK, and
HSN), but the effect was not as good as that of the PLSR model. Some studies have
pointed out that as a biased estimation method, the RR was more consistent with the actual
regression process [56].

4.3. Model Uncertainty Analysis

The key to effectively predicting soil salinity (EC) using spectroscopy (VIS-NIR) de-
pends on the proper selection of soil and environmental characteristics and the model. The
data, spectral covariates, and the model are the most common sources of uncertainty [57].
The uncertainty of the spectral covariates is mainly attributable to the different effects
of soil organic matter and water on the spectrum. The salinization mechanisms in our
study resulted from the infiltration of exogenous water, topography, inappropriate culti-
vation management with regard to climate, and geology, i.e., the saline parent materials.
In particular, the perennial irrigation without drainage and the annual introduction of a
large amount of irrigation water from the Ningxia section of the Yellow River with a water
salinity level of 0.5 g/L [58] both increased the salinity of the soils. Furthermore, irrigation
water side seepage causes the adjacent lowland groundwater level to rise, resulting in
secondary soil salinization. Therefore, the distribution of salt in the study area neither
changes according to depth nor is constant over time. The micro-topography of farmland
soil and the adsorption characteristics of the soil components change the location of the
soil salt deposition. The uneven distribution of the soil samples in the study area leads to
an uneven density of the soil samples with different degrees of salinization.

The texture, soil depth, water content, and organic matter of the different types of
saline soil were inconsistent (Table 2), which affected the soil spectrum. The spatial scale
of the predictor variables has a significant impact on the prediction accuracy [59]. The
soil texture affects the absorption, reflection, and scattering characteristics of visible near-
infrared spectra from the physical structure of particle composition and the chemical
characteristics of clay particles [60,61], which further affects the model inversion effect.
Studies have shown that the higher the clay content in the soil, the higher the EC value,
and this plays a significant role in the model [23]. The larger the range from bedrock to
surface, the larger the soil volume and the lower the salt content under the influence of
natural and human factors [62]. Different types of saline–alkaline soil have different soil
depths. In this study, the different types of salinized soils were not collected at the same
scale because of the different sample sites, and this also led to inconsistent model accuracy.

Our study did not consider the influence of water and land surface temperature,
because soil salinity is closely related to the groundwater level. This is also recognizable
from the correlation coefficient of −0.603 to −0.705 between the groundwater depth and
salt content of the cultivated topsoil (0−20 cm) in Ningxia [63]. Thermodynamic factors
such as heat capacity and the coefficient of thermal conductivity are also likely to affect salt
deposition and distribution, but this effect should be more reflected in the time scale of soil
salinization dynamics. The management of cultivated land soil is a fundamental element
of the process of secondary salinization. The distances of irrigation and drainage infras-
tructure, the use of chemical fertilizer, and planting patterns are all reported as variables
affecting salinity [64,65]. In addition, this study only used the measured hyperspectral data
for research and did not use the data from multispectral remote sensing. In future research,
we will combine the multispectral remote sensing data with the measured hyperspectral
data for salinization inversion research.

5. Conclusions

To study the differences in the hyperspectral characteristics of various saline–alkaline
soil types and establish high precision quantitative inversion models, we selected the
Hetao plain on the upper reaches of the Yellow River, where the soils have different
degrees of salinization resulting from various salinization processes. The patterns of the
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spectra curves of different salinized soil types were generally the same, but the size of
the hyperspectral reflectance differed. Up to 1400 nm, the Haplic Sonlontzs (HSN) had
the highest reflectance, followed by the Calcic Sonlonchaks (CSK). The Haplic Solonchaks
(HSK) and Takyr Solonetzs (TSN) showed similar reflectance, and the Fluvic Solonchaks
(FSK) had the lowest reflectance. The spectral curves of the soils with degrees of salinization
in the HSK, CSK, HSN, and TSN increased with the increase in the salinity at 400–650 nm,
but after 650 nm, the reflectance was irregular. The reflectance of the Stagnic Solonchaks
(SSK) soils with degrees of salinization were quite different from each other, with regular
changes except for the moderate and strongly salinized soils. The reflectance of the FSK
soils with different degrees of salinization showed similar changes without regularity. The
heterogeneity of the various salinized soil types led to inconsistent correlation properties
between the soils. In the whole band, the reflectance of the SSK and TSN were positively
correlated with the EC values, but the FSK was negatively correlated, and the correlation
of the reflectance of the HSK, CSK, and HSN with the EC values changed from positive
to negative. Based on the variable projection importance (VIP), different characteristic
factors were selected for the various salinized soil types. The two-dimensional spectral
index (RI, DI, and NDI) and characteristic bands were the most selected factors, whereas
the topographic variables and climatic variables were less sensitive to the EC. Of the four
modeling methods applied, the model performance was extremely randomized trees (ERT)
> random forest (RF) > partial least squares regression (PLSR) > ridge regression (RR). The
most effective inversion model for the HSK and FSK was the RF, and for the CSK, SSK, HSN,
and TSN, it was the ERT. Of the models, the CSK–ERT was the most effective (R2 = 0.99,
RMSE = 0.18, and RPIQ = 6.38). This study provides a reference for the inversion of the soil
EC values of cultivated land, which has a wide range of salinity, and lays a foundation for
large-scale monitoring of soil salinization using remote sensing.
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