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Evaluating Next-Cell Predictors with
Extensive Wi-Fi Mobility Data

Libo Song, David Kotz, Senior Member, IEEE Computer Society,

Ravi Jain, Senior Member, IEEE, and Xiaoning He

Abstract—Location is an important feature for many applications, and wireless networks may serve their clients better by anticipating

client mobility. As a result, many location predictors have been proposed in the literature, though few have been evaluated with

empirical evidence. This paper reports on the results of the first extensive empirical evaluation of location predictors using a two-year

trace of the mobility patterns of more than 6,000 users on Dartmouth’s campus-wide Wi-Fi wireless network. The surprising results

provide critical evidence for anyone designing or using mobility predictors. We implemented and compared the prediction accuracy of

several location predictors drawn from four major families of domain-independent predictors, namely, Markov-based, compression-

based, PPM, and SPM predictors. We found that low-order Markov predictors performed as well or better than the more complex and

more space-consuming compression-based predictors.

Index Terms—Mobility prediction, location prediction, mobility management, location-aware applications, wireless network, cellular

network, WLAN, Wi-Fi.

Ç

1 INTRODUCTION

A fundamental problem in mobile computing and
wireless networks is the ability to track and predict

the location of mobile devices. An accurate location predictor
can significantly improve the performance or reliability of
wireless network protocols, the wireless network infrastruc-
ture itself, and many applications in pervasive computing.
These improvements lead to a better user experience, to a
more cost-effective infrastructure, or both.

For example, in wireless networks, the SC (Shadow
Cluster) scheme can provide a consistent QoS support level
before and after a handover [1]. In the SC scheme, all cells
neighboring a mobile node’s current cell are requested to
reserve resources for that node in case it moves to that cell
next. Clearly, this approach ties up more resources than
necessary. Several proposed SC variations [2] attempt to
predict the device’s movement so the network can reserve
resources in only certain neighboring cells. As an example,
it has been shown experimentally that IP header compres-
sion can be used to reduce wireless bandwidth usage for
Voice over IP (VoIP) applications running over WiFi [3]. In
such a scenario, the system could place the context required
for header compression at the next AP(s) that the user is
predicted to move to, to start header compression sooner
and make the handoff smoother.

Location prediction has been proposed in many other
areas of wireless cellular networks as a means of enhancing
performance, including better mobility management [4],

improved assignment of cells to location areas [5], more
efficient paging [6], and call admission control [7].

Many pervasive computing applications include oppor-
tunities for location-based services and information. With a
location predictor, these applications can provide services
or information based on the user’s next location. For
example, consider a university student that moves from
dormitory to classroom to dining hall to library. When the
student snaps a photo of his classmates using a wireless
digital camera and wishes to print it, the camera’s printing
application might suggest printers near the current location
and near the next predicted location, enabling the photo to
finish printing while the student walks across campus.

Both of these examples depend on a predictor that can
predict the next wireless cell visited by a mobile device, given
both recent and long-term historical information about that
device’s movements. Since an accurate prediction scheme is
beneficial to many applications, many such predictors have
been proposed and surveyed by Cheng et al. [8].

On the other hand, none of these predictors have ever
been evaluated with extensive mobility data from real
users. Das et al. use two small user mobility data sets to
verify the performance of their own prediction schemes,
involving a total of five users [9]. As we show in this paper,
using a large set of user mobility data collected at Dart-
mouth College, an experimental evaluation of predictors
provides critical insight into the relative performance of the
predictors proposed in the literature, with often surprising
results. The lack of prior empirical evaluation of mobility
prediction is probably due to the lack of real mobility traces.
Cellular/PCS/GSM/3G mobility data are difficult to
obtain. Fortunately, the proliferation of WLANs enables
researcher to collect the mobility data of WLAN users. We
chose the Dartmouth WLAN mobility trace because of its
ready availability.

We recorded for two years the sequence of wireless cells
(Wi-Fi access points) frequented by more than 6,000 users. It
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is important to note that the data records the registration of
devices to access points and does not directly record the
physical movement of human users. Thus, for example, a
mobile device located at the boundary between two cells
may register alternately with one access point and then the
other in response to changing radio conditions, even if the
user does not change locations. Nonetheless, from the point
of view of many system applications, such as those
attempting to improve mobility or QoS management, the
user’s physical location may not matter, as the important
thing is which cell the device is located in and consuming
resources in. In this paper, we focus on predicting the next
cell visited by the mobile device.

In this paper, we present detailed results from our
comparison of the accuracy of several location predictors.
Specifically, we implemented four major families of
domain-independent predictors, namely, Markov-based,
compression-based, PPM, and SPM predictors. We were
surprised to find that the low-order Markov predictors
performed as well or better than the more complex and
more space-consuming compression-based predictors.

Furthermore, we found that accuracy often suffers when
predictors fail to make a prediction when the recent context
has not been seen in prior history. To overcome this
drawback, we added a simple fallback feature to each
predictor and found that it significantly enhanced its
accuracy in exchange for modest effort. In the end, the
Oð2Þ Markov predictor with fallback was the best predictor
we studied, obtaining a median prediction accuracy of
about 63 percent over all users and about 72 percent over all
users with sufficiently long location histories (1,000 cell
crossings or more), although accuracy varied widely from
user to user. This performance, obtained with one of the
simplest predictors and using as input only an uninter-
preted history of cell crossings, may be sufficient for many
useful applications. Of course, further work on improved
predictors is also useful, and we discuss that briefly in
Section 6.

We note that WLAN has been increasingly popular in
corporate campuses, university campuses, and cities. VoIP
phones using WLAN are emerging. We envision that, in the
near future, we will see more and more mobile WLAN
users and mobility prediction will enable a better quality of
services in WLAN. We simulated bandwidth reservation
schemes by feeding our real mobility traces with location
prediction as well as time prediction [10] and found that,
even with moderate prediction accuracy, we can reduce the
call drop rate five times, but only increase the call block rate
at most twice. Since we conducted our experiment on the
Dartmouth data, we cannot guarantee that the conclusions
will hold true for other data traces.

After providing more background on our data set, the
predictor families, and our evaluation metrics, we examine
the performance of each predictor on our data set. We
conclude the paper with an extensive summary of our
conclusions.

2 BACKGROUND

In this section, we define the locations that we use in the
paper as symbols and discuss how we collected the
empirical data set we used in our evaluation.

2.1 Location

In the context of this work, we assume that a user resides at
a given discrete location at any given time; sample locations
include “room 116” within a building, “Thayer Dining
Hall” within a campus, “cell 24” within a cellular network,
or “berry1-ap” access point within a 802.11 wireless
network.

In our data, as we discuss below, we have available the
name of the access point with which the user’s device is
associated. We also have the geographical location of each
access point and the name of the building the access point is
located in (or the nearest building). For simplicity, we call
the access point where the user’s device is registered a
location, although this should not be taken to imply that we
know the user’s precise geographical location in, say,
latitude and longitude.

We list all possible locations in a finite alphabet A and
can identify any location as a symbol a drawn from that
alphabet. For a given user, we list the sequence of locations
visited, its location history L, as a string of symbols. If the
history has n locations, Ln ¼ a1a2 . . . an, and ai 2 A, for
1 � i � n.

The location history may be a sequence of location
observations; for example, the user’s location recorded once
every five seconds or a sequence of location changes. In the
latter case, ai 6¼ aiþ1 for all 0 < i < n. All of the predictors
we consider in this paper are agnostic to this issue. It
happens that our data is a sequence of location changes. We
refer to a location change as a move.

All of the predictors we consider in this paper are
domain-independent and operate on the string L as a
sequence of abstract symbols. They do not place any
interpretation on the symbols. For that reason, our location
history does not include any timing information or require
any associated information relating the symbols such as
geographic coordinates. As an example, though, consider
the environment with six wireless cells (labeled b through g)
diagrammed in Fig. 1, accompanied by one possible
location history.

2.2 Data Collection

We have been monitoring usage on the Wi-Fi network at
Dartmouth College since installation began in April 2001.
Installation was largely complete by June 2001 and, as of
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Fig. 1. Sample cell map and location history. Sample location history

L ¼ gbdcbgcefbdbde.



spring 2003, there were 543 access points providing 11 Mbps
coverage to the entire campus. Although there was no
specific effort to cover outdoor spaces, the campus is
compact and the interior APs tend to cover most outdoor
spaces. The wireless population is growing fast. As of
May 2003 there were between 2,500 and 3,500 users active
on any given day.

The access points transmit a “syslog” message every
time a client card associated, reassociated, or disassociated;
the message contains the unique MAC address of the client
card. Although a given card might be used in multiple
devices or a device used by multiple people, in this paper,
we think of the wireless card as a “network user” and,
thus, the term “user” refers to a wireless card. As
mentioned previously, the locations in a trace are the
names of the access points with which a user is associated
and do not necessarily correspond to the precise geogra-
phical locations of humans. Similarly, changes in location,
i.e., moves, do not necessarily correspond to the physical
movement of humans.

We have a nearly continuous, two-year record of these
syslog messages from April 2001 through March 2003. Our
data has some brief “holes” when the campus experienced a
power failure or when a central syslog daemon apparently
hung up. Also, since syslog uses UDP, it is possible that
some messages were lost or misordered. In March 2002, we
installed two redundant servers to record the data, so that
holes in one of the servers can be filled by the data recorded
by the other server. For more information about Dart-
mouth’s network and our data collection, see our previous
studies [11], [12].

After we cleaned the data of some glitches and merged
the data from two servers (where available), we extracted
user traces from the data. Each user’s trace is a series of
locations, that is, access-point names. We introduce the
special location “OFF” to represent the user’s departure
from the network (which occurs when the user turns off
their computer or their wireless card or moves out of range
of all access points). We treat OFF in exactly the same way
as any other symbol (access-point name) in the users’ traces
and, thus, our predictors attempt to predict transitions to
and from the OFF state as they would any other move.

The traces varied widely in length (number of locations

in the sequence) with a median of 494 and a maximum of

188,479; most are shown in Fig. 2. Users with longer traces

were either more active (using their card more), more

mobile (thus, changing access points more often), or used

the network for a longer period (some users have been on

the network since April 2001 and some others have only

recently arrived on campus). Some users have visited many

APs during the period of measurement, while some others

have only visited a small number of APs. Fig. 3 shows the

distribution of the number of APs visited for each user. It

indicates that most users have visited relatively few APs;

about 80 percent have visited about 50 APs or less. We are

also interested in the density of visits per AP for each user.

Some users have visited many APs, but only a few visits for

each AP. However, some other users have intensively

visited a small number of APs. Fig. 4 presents the

distribution of average visits per AP for each user. It

indicates that most users have relatively few visits to any

given AP; about 80 percent have about 50 visits or less per

AP. These curves illustrate the potential difficulty of

prediction; while users visit relatively few APs, the history

of their movement from a given AP is relatively small.
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Fig. 2. Length of user traces.
Fig. 3. Number of visited APs per user.

Fig. 4. Number of visits per AP.



3 PREDICTORS

Location predictors can be domain independent or domain

dependent. Domain-independent location predictors con-

sider locations as symbols. These predictors consider the

name of locations without considering other semantics of

the location. On the other hand, domain-dependent location

predictors use domain information, such as the coordinates,

the speed and direction of a moving user, the function of a

location (food facilities), or the distance between locations

(nearby locations).
In this paper, we consider only domain-independent

predictors; we will examine domain-dependent predictors

in future work. We are interested in online predictors, which

examine the history so far, extract the current context, and

predict the next location. Once the next location is known,

the history is now one symbol longer, and the predictor

updates its internal tables in preparation for the next

prediction.
During the rest of this section, we discuss four

families of domain-independent predictors: Order-k Mar-

kov, LZ-based, PPM, and SPM predictors.

3.1 Markov Family

The order-k (or “OðkÞ”) Markov predictor assumes that the

location can be predicted from the current context; that is,

the sequence of the k most recent symbols in the location

history ðan�kþ1; . . . ; anÞ. The underlying Markov model

represents each state as a context, and transitions represent

the possible locations that follow that context.
Consider a user whose location history is L ¼ a1a2 . . . an.

Let substring Lði; jÞ ¼ aiaiþ1 . . . aj for any 1 � i � j � n.

We think of the user’s location as a random variable X. Let

Xði; jÞ be a string XiXiþ1 . . .Xj representing the sequence

of random variates Xi;Xiþ1; . . .Xj for any 1 � i � j � n.

Define the context c ¼ Lðn� kþ 1; nÞ. Let A be the set of

all possible locations. The Markov assumption is that X

behaves as follows, for all a 2 A and i 2 f1; 2; . . . ; ng:

P Xnþ1 ¼ ajXð1; nÞ ¼ Lð Þ
¼ P Xnþ1 ¼ ajXðn� kþ 1; nÞ ¼ cð Þ
¼ P Xiþkþ1 ¼ ajXðiþ 1; iþ kÞ ¼ cð Þ;

where the notation P ðXi ¼ aij . . .Þ denotes the probability

that Xi takes the value ai. The first two lines indicate the

assumption that the probability depends only on the

context of the k most recent locations. The latter two lines

indicate the assumption of a stationary distribution; that

is, the probability is the same anywhere the context is the

same.
These probabilities can be represented by a transition

probability matrix M. Both the rows and columns of M are

indexed by length-k strings from Ak so that

P ðXnþ1 ¼ ajXð1; nÞ ¼ Lð1; nÞÞ ¼Mðs; s0Þ;

where s ¼ Lðn� kþ 1; nÞ is the current context and s0 ¼
Lðn� kþ 2; nÞa is the next context. In that case, knowing M

would immediately provide the probability for each

possible next symbol of L.

Since we do not know M, we can generate an estimate bP
from the current history L using the current context c of
length k. The probability for the next symbol to be a is

PkðaÞ ¼ bP ðXnþ1 ¼ ajLÞ ¼
Nðca; LÞ
Nðc; LÞ ; ð1Þ

where Nðs0; sÞ denotes the number of times the substring s0

occurs in the string s.
Given this estimate, we can easily define the behavior of

the OðkÞ Markov predictor. It predicts the symbol a 2 A
with the maximum probability bP ðXnþ1 ¼ ajLÞ; that is, the
symbol that most frequently followed the current context c
in prior occurrences in the history. Notice that, if c has never
occurred before the current context, the above equation
evaluates to 0=1 ¼ 0 for all a, and the OðkÞMarkov predictor
makes no prediction.

If the location history is not generated by an
OðkÞ Markov source, then this predictor is, of course, only
an approximation.

Fortunately, OðkÞ Markov predictors are easy to imple-
ment. Our implementation maintains an estimate of the
(sparse) matrix M, using (1). To make a prediction, the
predictor scans the row of M corresponding to the current
context c, choosing the entry with the highest probability for
its prediction. After the next move occurs, the predictor
updates the appropriate entry in that row of M and updates
c in preparation for the next prediction.

In this paper, we indirectly use an Oð0Þ Markov
predictor; since k ¼ 0, the context is empty and the
predictor simply returns the location most frequently seen
in L.

Vitter and Krishnan [13] use OðkÞ predictors to prefetch
disk pages and prove interesting asymptotic properties of
these predictors. Other variations of Markov predictors can
be found in the survey [8].

3.2 LZ Family

LZ-based predictors are based on a popular incremental
parsing algorithm by Ziv and Lempel [14] often used for
text compression. This approach seems promising because
1) most good text compressors are good predictors [13] and
2) LZ-based predictors are like the OðkÞ Markov predictor,
except that k is a variable allowed to grow to infinity [6]. We
briefly discuss how the LZ algorithm works.

Let � be the empty string. Given an input string s, the
LZ parsing algorithm partitions the string into distinct
substrings s0; s1; . . . ; sm such that s0 ¼ � and, for all j > 0,
substring sj without its last character is equal to some si; 0 �
i < j and s0s1 . . . sm ¼ s. Observe that the partitioning is
done sequentially, i.e., after determining each si, the
algorithm only considers the remainder of the input string.
Using the example from Fig. 1, s ¼ gbdcbgcefbdbde is parsed
as �; g; b; d; c; bg; ce; f; bd; bde.

Associated with the algorithm is a tree, the LZ tree, that is
grown dynamically during the parsing process. Each node
of the tree represents one substring si. The root is labeled �
and the other nodes are labeled with a symbol from A so
that the sequence of symbols encountered on the path from
the root to that node forms the substring associated with
that node. Since this LZ tree is to be used for prediction, it is

1636 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 12, DECEMBER 2006



necessary to store some statistics at each node. The tree
resulting from parsing the above example is shown in Fig. 5;
each node is labeled with its location symbol and the value
of its statistic, a counter, after parsing.

To parse a (sub)string s, we trace a path through the
LZ tree. If any child of the current node (initially, the root)
matches the first symbol of s, remove that symbol from s
and step down to that child, incrementing its counter;
continue from that node, examining the next symbol from s.
If the symbol did not match any child of the current node,
then remove that symbol from s and add a new child to the
current node, labeled with that symbol and counter ¼ 1;
resume parsing at the root with the now shorter string s.

Based on the LZ parsing algorithm, several predictors
have been suggested in the past [13], [15], [16], [6], [7]. We
describe some of these below and then discuss how they
differ. For more detailed information, please refer to the
survey [8].

LZ predictors. Vitter and Krishnan [13] considered the
case when the generator of L is a finite-state Markov source,
which produces sequences where the next symbol is
dependent on only its current state. (We note that a finite-
state Markov source is different from the OðkÞ Markov
source in that the states do not have to correspond to strings
of a fixed length from A.) They suggested estimating the
probability, for each a 2 A, as

bP ðXnþ1 ¼ ajLÞ ¼
NLZðsma; LÞ
NLZðsm; LÞ

; ð2Þ

where NLZðs0; sÞ denotes the number of times s0 occurs as a
prefix among the substrings s0; . . . ; sm which were obtained
by parsing s using the LZ algorithm.

It is worthwhile comparing (1) with (2). While the former
considers how often the string of interest occurs in the
entire input string, the latter considers how often it occurs
in the partitions si created by LZ. Thus, in the example of
Fig. 5, while dc occurs in L, it does not occur in any si.

The LZ predictor chooses the symbol a in A that has the
highest probability estimate; that is, the highest value ofbP ðXnþ1 ¼ ajLÞ. An online implementation need only build
the LZ tree as it parses the string, maintaining node
counters as described above. After parsing the current
symbol, the algorithm rests at a node in the tree. It examines
the children of the current node, if any, and predicts the
symbol labeling the child with the highest counter, which
indicates the highest frequency of past occurrence. If the
current node is a leaf, the LZ predictor makes no prediction.

LZ þ Prefix and PPM. Bhattacharya and Das propose a
heuristic modification to the construction of the LZ tree [6],
as well as a way of using the modified tree to predict the
most likely cells that contain the user so as to minimize
paging costs to locate that user.

As we mention above, not every substring in L forms a
node si in the LZ parsing tree. In particular, substrings that
cross boundaries of the si, 0 < i � m, are missed. Further,
previous LZ-based predictors take into account only the
occurrence statistics for the prefixes of the leaves. To
overcome this, they proposed the following modification.
When a new leaf is created for si, all the proper suffixes of si
(i.e., all the suffixes not including si itself) are also inserted
into the tree. If a node representing a suffix does not exist, it
is created, and the occurrence counter for every prefix of
every suffix is incremented.

Example. Suppose the current leaf is sm ¼ bde and the
string de is one that crosses boundaries of existing si for
1 � i < m. Thus, de has not occurred as a prefix or a
suffix of any si, 0 < i < m. The set of proper suffixes of
sm is Sm ¼ f�; e; deg, and since there is no node
representing the substring for de, it is created. Then,
the occurrence frequency is incremented for the root
labeled �, the first-level children b and d, and the new
leaf node de. Fig. 6 shows the tree after this transforma-
tion, which we call “LZþ prefix” or “LZP” for short.

We observe that this heuristic only discovers substrings
that lie within a leaf string. Nonetheless, at this point, it is
possible to use the modified LZ tree and apply one of the
existing prediction heuristics, e.g., use (2) and the Vitter-
Krishnan method. Indeed, we include the LZP predictor in
our comparison.

Bhattacharya and Das [6] propose a further heuristic
that uses the LZP tree for prediction. This second heuristic
is based on the Prediction by Partial Match (PPM)
algorithm for text compression [17]. (The PPM algorithm
essentially attempts to “blend” the predictions of several
OðkÞ Markov predictors; we describe it briefly below.)
Given a leaf string sm, construct its set of proper suffixes
Sm and update the LZP tree as described above. Then, for
each such suffix, the heuristic considers the subtree rooted
at the suffix and finds all the paths in this subtree
originating from this subtree root. The PPM algorithm is
then applied to this set of paths. PPM first computes the
predicted probability of each path, and then uses these
probabilities to compute the most probable next symbol(s)
based on their weights (number of occurrences) in the
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path. We include the “LZþ prefixþ PPM” predictor, nick-
named “LeZi” [6] in our comparison.

3.3 PPM

Prediction by Partial Matching (PPM) is a data compression
scheme, often used in text compression [18]. As with
Markov predictors, the basic idea of PPM is to use the last
few symbols in the input stream to predict the next one.
Order-k (or OðkÞ) PPM uses the k immediately preceding
symbols to update the model for prediction. A OðkÞ PPM
predictor blends a set of different order context models,
from 0 to k. Each fixed-order context model is built as an
OðkÞ Markov model. The combination of the different
models is achieved through the use of “escape” probabil-
ities, which are the probabilities of encountering previously
unseen symbols. There are three major methods to deter-
mine the escape probabilities [17], although we do not have
space here to describe them. The method used in our
implementation is called “Method C” [17]. The number of
escape events is equal to the number of different symbols
that have been seen in the context so far. The total number of
events is the number of all symbols that have been seen in
the context so far. Thus, the escape probability is the number
of escape events divided by the total number of events. Let
Ek be the escape probability for a k-symbol context,

Ek ¼
Ne

N
; ð3Þ

where Ne is the number of escape events and N is the total
number of all events.

Then, for all a 2 A, the OðkÞ PPM probability is

P ðxnþ1 ¼ ajLÞ ¼ PkðaÞ þ
Xk
i¼1

Pk�1ðaÞEk; ð4Þ

where PkðaÞ is the probability computed using the OðkÞ
Markov model (see (1)).

3.4 SPM

Jacquet et al. [19] proposed a predictor called the Sampled
Pattern Matching (SPM) algorithm. This algorithm is of
interest as it considers much larger classes of sources (in our
case, movement traces) than OðkÞ Markov predictors. In
particular, it addresses what are called strongly mixing
sources, which contain fixed-order Markov sources as a
special case. SPM was shown theoretically to be asympto-
tically optimal; that is, to have a fault rate the same as the
best possible predictor for this class of sources. SPM is
similar to OðkÞ Markov except, instead of using a fixed
value of context length k, the length is determined by a
fixed fraction ð�Þ of the longest context that has been
previously seen, as described below.

Start by finding the longest suffix of X1; X2; . . . ; Xt that
has occurred previously in the sequence; this is called
the maximal suffix. Denote its length by dt. Instead of
considering the entire maximal suffix, however, the
algorithm considers only a fraction of the suffix. Choose
a fixed constant �, where 0 < � < 1. The suffix of interest is
now c ¼ Xt�ktþ1; Xt�ktþ2; . . . ; Xt, where kt ¼ d�dte. The next
predicted character is

argmaxa2ANðca; LÞ;

where Nðs; LÞ is the number of times the string s occurred
in the history L.

Example. Consider the sequence of length 40 below. The
maximal suffix is YGSJSLJZ; if we set � ¼ 0:5, then the
fractional suffix is SLJZ. Its occurrences are shown below
marked by a box:

The symbols that followed the fractional suffix SLJZ in the
sequence are G, K, I, G, respectively. SPM will predict G.

4 METRICS

To evaluate a predictor, we run each user’s trace indepen-
dently through our implementation of that predictor. For
each location in the trace, the predictor updates its data
structure and then makes a prediction about the next
location. Our experimental framework tracks the accuracy
and other metrics of the predictor.

Before we discuss the metrics that we used in our
evaluation, let us first discuss how we break ties when two
or more locations have the same probability.

4.1 Breaking Ties

In our descriptions of the predictors above, we indicate that
each predicts the symbol with the highest probability of
occurring next, given the current state of its data structure
(Markov matrix or LZ tree, for example). It is quite possible,
though, for there to be a tie for first place; that is, several
symbols with equal probability and none with higher
probability. Generally, the literature does not indicate how
to break a tie, yet our implementations must make a specific
choice. We implemented three different tie-break methods:

. First added. Among the symbols that tie, we predict
the first one added to the data structure; that is, the
first one seen in the location history.

. Most recently added. Among the symbols that tie, we
predict the one that was most recently added to the
data structure.

. Most recent. Among the symbols that tie, we predict
the one most recently seen in the history.

In Fig. 7, we show the ratio of the number of ties to the
number of predictions using a cumulative distribution

1638 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 12, DECEMBER 2006

Fig. 7. Ratio of number of ties to the number of predictions.



function (CDF) across all users having more than
1,000 movements for different predictors (the O(2) Markov
fallback predictor will be described later). Fortunately,
Fig. 7 shows that most of the users had few ties, less than
about 10 percent of all predictions. Our experiments
showed that the results were not significantly affected by
the choice of a tie-breaking method. We used the “first
added” method throughout the results below and do not
consider tie-breakers further.

4.2 Accuracy Metric

During an online scan of the location history, the predictor
is given a chance to predict each location. There are three
possible outcomes for this prediction, when compared to
the actual location:

. The predictor correctly identified the next location.

. The predictor incorrectly identified the next location.

. The predictor returned “no prediction.”

All predictors encounter situations in which they are unable
to make a prediction; in particular, all history-based
predictors will have no prediction for the first location of
each user trace.

We define the accuracy of a predictor for a particular user
to be the fraction of moves for which the predictor correctly
identified the next location. Thus, “no prediction” is
counted as an incorrect prediction. In the future, we plan
to examine other metrics that can better distinguish the two
forms of incorrect prediction (there may be some applica-
tions that may prefer no prediction to a wild guess). For
now, this metric best reflects the design of predictors
common in the literature.

If the location has geographical coordinates, other
accuracy metrics can be measured. For example, the
distance between the actual location and the predicted
location, or the angle between the direction to the actual
location and the direction to the predicted location, is
nonbinary accuracy metric. Since our data are symbolic,
these geographic metrics do not apply to our predictors.

However, we can measure the probability difference
between the actual location and the predicted location or
the rank of the actual location in the list of transitions
probabilities. A full exploration of these nonbinary accuracy
metrics is part of our future work.

4.3 Median Running Accuracy

Above, we define accuracy for a given trace as simply the
final average accuracy at the end of the trace. We also define
the median running accuracy across a set of traces. At each
step i, for each trace that has length at least i, we compute
the average accuracy at each step by dividing the number of
correct predictions so far by i. There are generally several
traces that have length at least i; for each step i, we find the
median accuracy among all such traces and call it the
median running accuracy. This metric enables us to
consider how, over all traces, accuracy changes as trace
length increases.

4.4 Memory Usage

Memory usage is another important aspect of predictors.
High memory usage will prevent a predictor from being
implemented in a memory-limited device. In our evaluation,

we use a predictor’s table size to indicate its memory usage.

The table size is the number of cells of a Markov predictor’s
transition probability matrix that have nonzero probabil-

ities, or the number of nodes of the tree in LZ-based

predictors, PPM predictors, and SPM predictors. Since each
of those cells or nodes contains only the name of a location

and the probability to move this location, the actual memory

usage in bytes is just a constant factor of the table size.

4.5 Entropy Metric

We believe that there are some intrinsic characteristics of a
trace that ultimately determine its predictability and, hence,
the performance of different predictors. Entropy may be a
good indicator of predictability. The movement entropy is a
descriptor of the movement randomness. We study the
movement entropy to better understand why some users
are more predictable than others. In the results section, we
compare the accuracy metric with the entropy metric, for
each user, on several predictors.

In general, the entropy HðXÞ of a discrete random
variable X is defined as

HðXÞ ¼ �
X
x2X

P ðxÞ log2 P ðxÞ; ð5Þ

where X is the set of all possible of values of x. For more
information about entropy and its application to Markov
predictors, see the Appendices.

In this paper, we compute the entropy of a given user
under the OðkÞ Markov predictor. We obtain the probabil-
ities P ðxÞ from the data structures constructed by that
predictor on that user’s trace.

If C is the set containing all the context strings
encountered in parsing a location history L, then the
conditional entropy is

HðXjCÞ ¼ �
X
c2C

Nðc; LÞ
n� kþ 1

X
a2A

P ðx ¼ ajcÞ log2 P ðx ¼ ajcÞ:

ð6Þ

5 RESULTS

We evaluated the location predictors using our Wi-Fi
mobility data. In this section, we examine the results.

5.1 Markov

Before we compare the accuracy of many users’ traces,
consider the running accuracy of a single user’s trace as
shown in Fig. 8, using the Oð1Þ Markov predictor. The
accuracy of this trace is the rightmost value in this plot. In
subsequent graphs, we use this overall accuracy as the
performance metric.

Of course, we have several thousand users and the
predictor was more successful on some traces than on
others. In Fig. 9, we display the accuracy of the
Oð1Þ Markov predictor in CDF curves, one for each of
three groups of traces: short, medium, and long traces,
defined, respectively, as those with 100 or fewer moves,
101–1,000 moves, and over 1,000 moves. The predictor was
clearly unsuccessful on most short traces because its curve
is far to the left. Ultimately, we found that all predictors
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fared very poorly on short traces and somewhat poorly on
medium traces. In previous work [20], we thus focused on
long traces; there were 2,195 such users, out of 6,202 total
users traced. In the remainder of this paper, for the sake of
completeness, we generally consider all 6,202 traces. In
some cases, we only consider long traces when doing so
makes trends clearer; in that case, we note so explicitly.

Intuitively, it should help to use more context in each
attempt to predict the next location. In Fig. 10, we compare
the accuracy of Oð1Þ Markov with that of Oð2Þ, Oð3Þ, and
Oð4Þ Markov predictors. As an aside, we include an
“Order-0” Markov predictor, in which no context is used
in the prediction of each move. This predictor simply
predicts the most frequent location seen so far in that user’s
history. Although it represents a degenerate form of
Markov prediction, it helps to show the benefit of context
in the Oð1Þ predictor.

Not surprisingly, Oð2Þ often outpredicted Oð1Þ, and its
curve is further to the right. (In fact, when considering only
long traces, Oð2Þ generally outpredicts Oð1Þ). The high-
order Oð3Þ and Oð4Þ predictors were, however, worse than
Oð2Þ. Although these predictors use more information in
the prediction process, they are also more likely to
encounter a context (a three or four-location string) that

has not been seen before, in which case, they are unable to
make a prediction. A missing prediction is not a correct
prediction, and these unpredicted moves bring down the
accuracy of the higher-order predictors. In Fig. 11, we
display the conditional accuracy of these same predictors: The
number of correct predictions divided by the number of
predictions. In this metric, we ignore unpredicted moves,
and it becomes clear that longer context strings did lead to
better prediction, where possible, although with diminish-
ing returns. This trend becomes clearer when we consider
only long moves in Fig. 12.

Returning to our original accuracy metric, we now
consider a metapredictor based on the Markov predictor
family. Fig. 13 displays the performance of the Oð2ÞMarkov
predictor with “fallback,” which uses the results of the
Oð2Þ predictor when it makes a prediction, or the
Oð1Þ predictor if the Oð2Þ predictor has no prediction. In
general, the OðkÞ fallback predictor recursively uses the
result of the Oðk� 1Þ predictor (with k ¼ 0 as the base of the
recursion) whenever it encounters an unknown context.
Fallback indeed helped to improve the Oð2Þ Markov
predictor’s performance.

Markov predictors with fallback gain the advantage of
the deeper context but without losing accuracy by failing to
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Fig. 8. Prediction accuracy for a sample user.

Fig. 9. Accuracy of Oð1Þ Markov predictor.

Fig. 10. Comparing Markov predictors.

Fig. 11. Conditional accuracy metric for all traces.



predict in unknown situations. Although a higher-order
Markov predictor uses more context information, it has
fewer samples than a low-order one with the same
movement history. In our experiments, we found that
Oð3Þ Markov with fallback predictor perfomed worse than
Oð2ÞMarkov with fallback predictor. In the cases where the
Oð3Þ predictor makes an incorrect prediction but Oð2Þ does
not, we find that the Oð3ÞMarkov predictor had an average
of 8.23 samples, with a median number of 1.96, while the
Oð2ÞMarkov predictor has an average of 45.5 samples, with
a median number of 12.2.

In the plots so far, we examine the performance of
OðkÞ Markov predictors that used the most recent
k locations in making a prediction, weighting the potential
next locations by their frequency of occurrence in the past.
An alternative approach assigns weights according to the
recency of occurrence in the past; thus, one transition (the
most recent seen for this context) has weight 1 and the
others have weight 0. Observe that the OðkÞ Markov
prediction using the most-frequent location in general takes
Oðnkþ1Þ space, while using the most-recent location it takes
only OðnkÞ space, a potentially significant decrease in
storage. Fig. 14 shows the quality of Markov predictors
based on this approach. Curiously, here, Oð2Þ did worse

than Oð1Þ, although fallback made up some of the
difference. We are still exploring the reason behind this
difference.

In Fig. 15, we compare the recency-weighted approach
with the original frequency-weighted approach. The best
recency-weighted Markov predictor, Oð1Þ, was better than
the corresponding frequency-weighted predictor. This
result implies that recent history was a better predictor
of the immediate future than was an accumulated
probability model when considering only the current
location. On the other hand, recall from Fig. 14 that,
among the recency-weighted predictors, the extra context
of Oð2Þ lowered prediction accuracy. Thus, among
Oð2Þ predictors, the frequency-weighted approach beat
the recency-weighted approach (not shown in Fig. 15).
Ultimately, the Oð2Þ frequency-weighted Markov predictor
with fallback had the best outcome.

Some of our user traces span a period of hours or days,
but some span weeks or months. Clearly, it is possible for a
user’s mobility patterns to change over time; for example, a
student may move to a new dormitory or attend different
classes. The transition weights constructed by the fre-
quency-weighted Markov model may become ineffective
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Fig. 12. Conditional accuracy metric for long traces.

Fig. 13. Markov predictors with fallback.

Fig. 14. Markov using “most recent.”

Fig. 15. Markov: “most recent” versus “most frequent.”



after such a change; for users with a long history, these
weights will adapt too slowly. In another series of
experiments (not shown), we added an exponential decay
to the frequency weights so that more recent locations have
a larger impact, but we saw little improvement in the
quality of the predictors.

It seems likely that people move in temporally regular
patterns. For example, we expect that students are likely to
go to classrooms according to their class schedules, and go
to food facilities during lunch time and dinner time.
Therefore, we added time information to our location
predictors’ internal data structure and named the new
predictor Time-aided Markov predictor. We quantized time
of day in one-minute or one-hour buckets, so the predictor’s
state was a pair: (location, time). Fig. 16 shows that the time-
aided Markov predictor had lower prediction accuracy than
the original Markov location predictor. We think there are
two reasons causing the low accuracy of time-aided Markov
predictor.

First, the location information that we collected is not
human movements; instead, it is the pattern of a device’s
association with access points. Although human move-
ments usually follow patterns according to time, the
wireless devices may change their associated APs whenever
there is a stronger signal.

Second, the number of samples in each context of time-
aided Markov predictor is smaller than that of original
Markov predictor.

As shown in Fig. 9, short-trace users have the lowest
prediction accuracy. To overcome the lack of histories of
those users, we aggregated all the short-trace users’
movements to predict them. Fig. 17 compares the
aggregated prediction results with the individual predic-
tion results. For the Oð1Þ Markov predictor, although the
median user accuracy is better when we used aggregated
predictors than the individual predictors, there are fewer
high accuracy users when we used aggregated predictors
than individual predictors. The effect of the Oð1Þ Markov
predictor is mixed. However, the prediction accuracy of
the Oð2Þ Markov predictor and the Oð2Þ Markov predictor
with fallback is clearly higher using aggregated prediction
than using individual prediction.

5.2 LZ-Based

We first consider the LZ predictor, shown in Fig. 18. Since

LZ makes no prediction whenever the current context string

leads to a leaf in the tree, the plot includes two LZ variants.

As an alternative to no prediction (the first curve), we can

use the statistics at the root (second curve) to make a

prediction based on the probability of each location. That is,

when the predictor encounters a leaf, it behaves as if it is at

the root and simply predicts the most frequently seen child

of the root. Given our accuracy metric, it is always better to

make some prediction than no prediction and, indeed, in

this case, the accuracy is improved significantly. An even

better approach (third curve) is to fall back to progressively

shorter substrings of the current context, much as we did

with the Markov predictors, until a substring leads to a

nonleaf node from which we can make a prediction. This

fallback ability is critical to allow prediction to occur while

the tree grows, since the trace often leads to a leaf just before

adding a new leaf.

Bhattacharya and Das [6] proposed two extensions to the

LZ predictor. Fig. 19 displays the performance of the first

extension, LZP. Once again, this predictor (as defined in [6])
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Fig. 16. Time-aided Markov predictors. Fig. 17. Aggregated Markov predictors.

Fig. 18. LZ predictors.



makes no prediction when the context leads to a leaf. We

modified LZP to use statistics at the root, which helped, and

(better) to try fallback.
The second extension produces an LZþ prefixþ PPM

predictor nicknamed “LeZi.” Fig. 20 compares the perfor-
mance of LZ with LZP and LeZi, showing that each
extension did improve the accuracy of the LZ predictor
substantially.

When we compare the best variant of each LZ form, in
Fig. 21, it becomes clear that the simple addition of our
fallback technique to the LZ predictor did just as well as the
prefix and PPM extensions combined. (LeZi automatically
includes fallback by adding suffix substrings into the tree,
so there is no fallback variant.) This trend is even more
pronounced when considering only long traces. LZ with
fallback is a much simpler predictor than LZP or LeZi, and
since the accuracy is similar (and as we show below, the LZ
data structure was smaller), among the LZ predictors, we
recommend LZ with our fallback technique.

5.3 PPM and SPM

Prediction by Partial Matching (PPM), like Markov pre-
dictors, uses a finite context but blends together several
fixed-order context models to predict the next character
[21]. Fig. 22 shows that the amount of context does not
matter much when the order is 2 or above. The higher-order
PPM predictors do not have better prediction accuracy.

The SPM predictor [19] is, in a sense, a PPM predictor in
which there is no limit on order. Theoretically, the SPM
predictor should outperform any finite-order PPM predictor.

We also tried to set � ¼ 0:25 and � ¼ 0:75; both of the
results are worse than � ¼ 0:5, as shown in Fig. 23. The
reason may lie here: When we use a smaller � value, we are
using a short context with more samples. If we use a larger
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Fig. 19. LZP predictors.

Fig. 20. LZ, LZP, and LeZi predictors.

Fig. 21. LZ predictors with fallback.

Fig. 22. PPM predictors.

Fig. 23. SPM predictors with different fractional contexts.



� value, the number of the samples will be smaller. There is
a balance between the length of context to be used and the
number of samples at that context. However, Fig. 24 shows
that both PPM and SPM have an accuracy only slightly
better than the Oð2Þ Markov predictor with fallback. For
long traces, we found the difference to be negligible. Here,
we choose � ¼ 0:5.

5.4 AP Prediction Overall

We compare the best Markov predictors with the other best
predictors in Fig. 25. It is difficult to distinguish the
LZ family from the recency-based Oð1Þ Markov, which all
seem to have performed equally well. In general, the
Oð2Þ Markov predictor with fallback was the best overall.
For long traces (Fig. 26), the median accuracy with this
predictor is 72 percent. It is striking that the extra
complexity, and the theoretical aesthetics, of the LZ, PPM,
and SPM predictors apparently gave them no advantage.

We include an “Optimal” curve in Fig. 25 as a simple
upper bound on the performance of history-based location
predictors. In our definition, the “optimal” predictor can
accurately predict the next location, except when the
current location has never been seen before. Although it
should be possible to define a tighter, more meaningful
upper bound for domain-independent predictors like those

we consider here, it seems clear that there is room for better
location-prediction algorithms in the future.

5.5 Building Prediction

In some applications, we may need only a coarser sense of
the user’s location. We extracted building-level traces from
the AP-level traces; a building trace shows the sequence of
buildings visited by the user. As before, we record only
location changes, so the building trace is necessarily shorter
than the original sequence of APs visited. Then, we used
our predictors to predict the next building in each user’s
trace. Fig. 27 shows that the building prediction was more
accurate than AP prediction. Here, we focus only on long
traces and show that the best predictor can approach a
median accuracy of 80 percent. One reason is that there was
a smaller number of choices in the building trace than in the
AP trace. Note that the sets of users of the two different
forms of prediction were not the same; there are 2,190 users
who had more than 1,000 transitions in the AP-level trace
history, while there were only 1,501 users with more than
1,000 transitions in their building-level trace.

In the building-level prediction, the O(2) Markov with
fallback predictor also outperformed the O(1) Markov
predictor by about the same amount as in the AP-level
prediction.
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Fig. 24. SPM predictors with � ¼ 0:5.

Fig. 25. The best predictors, compared.

Fig. 26. The best predictors, compared (long traces only).

Fig. 27. Building prediction.



5.6 Correlations

It may be that some user traces are simply less predictable
than others. Some intrinsic characteristics of a trace may
determine its predictability. We explored several such
characteristics.

5.6.1 Entropy

The conditional entropy seems like a good indicator of
predictability. We computed the conditional entropy for
each user on their entire trace using (6). In Fig. 28, we
compare the entropy of each user based on the probability
table built by the Oð1Þ Markov predictor, with the accuracy
of the Oð1Þ predictor for long traces. The correlation is
striking and, indeed, the correlation coefficient is �0:95 (a
coefficient of 1:0 or �1:0 represents perfect correlation). This
strong correlation indicates that some users with high
entropy are doomed to poor predictability. The correlation
is not surprising since we computed the entropy from the
tables used for prediction.

Fig. 29 shows the correlation of the conditional entropy
and the Oð1Þ Markov predictor’s prediction accuracy for all
traces. This correlation is not as striking as for long traces.
Fig. 30 shows the correlation between entropy and the
accuracy of the Oð2Þ Markov predictor for all traces. For

short traces, the entropy can also be low since the amount of

information is small and the accuracy can also be low;

below, we discuss the relation of accuracy with trace length.

5.6.2 Trace Length

As indicated earlier, trace length has an impact on the

accuracy of all the predictors, so we investigated this aspect

in a little more detail.
Fig. 31 shows how the median running accuracy

increases with trace length for the Oð1Þ Markov as well as

the Oð2ÞMarkov with fallback. Clearly, the median running

accuracy increases rapidly with trace length up to short

traces, and then increases only relatively slowly. Note that,

for this metric, the Oð2Þ Markov with fallback outpredicts

Oð1Þ for all trace lengths.
We fit the data with both power and log functions and

found that the log function fit best. Specifically, these curves

fit the data:

for O(1) Markov,

aðiÞ ¼ 0:036 logeðiÞ þ 0:4176 ðwith R2 ¼ 0:8717Þ; ð7Þ

for O(2) Markov with fallback,

aðiÞ ¼ 0:0367 logeðiÞ þ 0:4647 ðwith R2 ¼ 0:8956Þ: ð8Þ
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Fig. 28. Correlating Oð1Þ Markov prediction accuracy with entropy (long
traces only).

Fig. 29. Correlating O(1) Markov prediction accuracy with entropy (all
traces).

Fig. 30. Correlating Oð2Þ Markov fallback prediction accuracy with
entropy (all traces).

Fig. 31. Correlating accuracy with trace length.



Of course, these curve fits have greatest errors when the

number of steps is small, i.e., i < 100.

5.7 Memory Usage

We can also measure how much memory each predictor

used to carry out the prediction. In Fig. 32, we show the size

of the predictors’ data structures at the end of processing

each user trace and making predictions.1 As with the

accuracy metric, we plot the table size for each predictor as

a distribution across all users. For Markov predictors, we

define the size to be the number of entries in the (sparse)

transition matrix, except for the recency-based Oð1Þ Mar-

kov, which simply needs to record the location of the latest

transition for each location ever visited. For LZ predictors,

we define the size to be the number of tree nodes. (Since the

size of each table entry or tree node is implementation

dependent, we do not measure table sizes in bytes.)
Clearly, the recency-based Oð1ÞMarkov had the simplest

and smallest table by far. In second place are the

Oð2Þ Markov and LZ predictors. PPM used more space,

and the LZP and LeZi predictors used by far the most space.
Although the medians of the Oð2Þ Markov and LZ

predictors appear to be similar, upon closer examination, it

is clear that the LZ predictor has a much higher maximum.

Indeed, this plot is truncated at the right side; for one user,

LZ used 17,374 nodes. LeZi used as many as 23,361 nodes!

The Markov predictor, on the other hand, never used more

than 5,000 table entries.
Computational complexity is another important metric

in some applications; we leave the asymptotic analysis to

the theoretical literature. Furthermore, we have not yet

evaluated the running time of these predictors on our data

(e.g., average microseconds per prediction), as we have not

yet tuned our implementation. Nonetheless, it is intuitively

clear that the simpler Markov predictors are likely to be

faster than the LZ predictors.

6 CONCLUSIONS

In this paper, we conducted the first comprehensive,
empirical comparison of four important classes of location
predictors to gauge which could most accurately predict the
next cell for a mobile wireless-network user. We found,
surprisingly, that the complex predictors were at best only
negligibly better than the simple Markov predictor, a result
that has important implications for anyone developing or
using such predictors in real applications.

Specifically, we compared four major families of domain-
independent online location predictors (Markov, LZ, PPM,
and SPM) by measuring their accuracy when applied to two
years of handoff traces we collected from 6,202 users of
Dartmouth College’s wireless network.

Many of the traces in our collection were short, less than
100 movements (cell changes), and all predictors fared
poorly on most of those users. These predictors typically
required a fair amount of history to initialize their
probability tables to a useful state. In general, we found
that accuracy increased rapidly with trace length for short
traces (less than 100 moves), slowly for medium traces (101-
1,000 moves), and very slowly for long traces (over
1,000 moves). Nonetheless, in this paper, we show results
over all traces, sometimes focusing on long traces to
highlight trends.

6.1 Summary of Prediction Results

In general, the simple low-order Markov predictors worked
as well or better than the more complex compression-based
predictors, and better than high-order Markov predictors.
In particular, Oð3Þ (or above) Markov predictors did not
improve over Oð2Þ Markov and, indeed, reduced accuracy
by failing to make predictions much of the time.

Most of the predictors, as defined in the literature, fail to
make a prediction when faced with a context (recent history)
that has never been encountered in the user’s full history.
We found it was simple to add “fallback” to most predictors,
allowing the predictor to use shorter and shorter context
until it was able to make a prediction, and that this fallback
often improved the predictor’s accuracy substantially.

In particular, Oð2Þ Markov with fallback beat or equaled
all of the other predictors, even though the latter have better
theoretical asymptotic behavior [8]. We found Oð2ÞMarkov
with fallback to be the best overall predictor was simple to
implement, had relatively small table size, and had the best
overall accuracy.

We introduced and evaluated a simple alternative to the
frequency-based approach to Markov predictors, using
recency (probability 1 for most recent, 0 for all others) to
define the transition matrix. Although this recency ap-
proach was best among Oð1Þ Markov predictors, it was
worst among Oð2Þ Markov predictors, and we are still
investigating the underlying reason.

We found most of the literature defining these predictors
to be remarkably insufficient at defining the predictors for
implementation. In particular, few defined how the pre-
dictor should behave in the case of a tie; that is, when there
was more than one location with the same most-likely
probability. We investigated a variety of tie-breaking
schemes within the Markov predictors, but found that the
accuracy distribution was not sensitive to the choice.
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1. The table size of SPM predictor is not shown in the plot. To shorten
our software development time, we used an inefficient data structure to
represent the user trace. It is not fair to compare this structure with the table
size of other predictors. A more efficient data structure can be found in the
literature [19].

Fig. 32. Distribution of final table sizes.



Since some of our user traces extend over weeks or
months, it is possible that the user’s mobility patterns do
change over time. All of our predictors assume the
probability distributions are stable. We briefly experimen-
ted with extensions to the Markov predictors that “age” the
probability tables so that more recent movements have
more weight in computing the probability, but the accuracy
distributions did not seem significantly affected.

We examined the original LZ predictor as well as two
extensions, prefix and PPM. LZ with both extensions is
known as “LeZi.” We found that both extensions did
improve the LZ predictor’s accuracy, but that the simple
addition of fallback to LZ did just as well, was much
simpler, and had a much smaller data structure. To be fair,
LeZi tries to do more than we require, to predict the future
path (not just the next move). We also examined the PPM
and SPM predictors, but found that they had little or no
improvement compared to Oð2Þ Markov with fallback. We
found this result to be surprising, since the LZ-based
predictors and SPM have better theoretical behavior (they
are asymptotically optimal for a larger class of sources).
However, for our real data, with its large number of short
and medium traces (as well as other phenomena that are
hard to capture theoretically), we found that Oð2Þ Markov
with fallback performed better in practice.

We stress that all of our conclusions are based on our
observations of the predictors operating on over 6,000 users
and, in particular, whether a given predictor’s accuracy
distribution seems better than another predictor’s accuracy
distribution. For an individual user, the outcome may be
quite different than in our conclusion. We plan to study the
characteristics of individual users that lead some to be best
served by one predictor and some to be best served by
another predictor.

There was a large gap between the predictor’s accuracy
distribution and the “optimal” accuracy bound (a rather
coarse upper bound), indicating that there is substantial
room for improvement in location predictors. On the other
hand, our optimal bound may be overly optimistic for
realistic predictors, since it assumes that a predictor will
predict accurately whenever the device is at a location it has
visited before. We suspect that domain-specific predictors
will be necessary to come anywhere close to this bound.

Overall, the best predictors had an accuracy of about 65-
72 percent for the median user. On the other hand, the
accuracy varied widely around that median. Some applica-
tions may work well with such performance, but many
applications will need more accurate predictors; we en-
courage further research into better predictors, as long as
they are experimentally verified.

6.2 Contributions

In summary, the contribution of this paper is in its
quantitative evaluation of several major location predictors
proposed in the literature using extensive empirical location
data collected from real users in a real network. We
discovered that the more complex predictors are not
necessarily better than the simpler Markov predictors. We
dug deeply into the behavior of the predictors by exploring
tie-breakers, alternatives such as recency versus frequency,
and aging. We examined how trace length affects accuracy,
and we explored how the entropy of a user’s history is
related to the prediction accuracy for that user. Our results

bring important insight to the design of location predictors
and we provide valuable advice to anyone wanting to use
domain-independent location predictors: Keep it simple.

APPENDIX A

DEFINITION OF THE ENTROPY

The standard definitions relating to entropy are as follows:

Definition 1. The entropy HðXÞ of a discrete random variable X
is defined as

HðXÞ ¼ �
X
x2X

P ðxÞ logP ðxÞ;

where X is the set of all possible values of X and P ðxÞ is the
probability of X ¼ x.

The entropy is used to describe the uncertainty of a
random variable. In other words, how much information on
average is needed if we want to determine the value of X.
The more uncertain a random variable is, the higher the
entropy.

Definition 2. The joint entropy H(X,Y) of a pair of discrete
random variables (X,Y) is defined as

HðX;Y Þ ¼ �
X
x2X

X
y2Y

P ðx; yÞ logP ðx; yÞ;

where P ðx; yÞ is the probability of the pair ðx; yÞ.

Similarly, the joint entropy describes how much in-
formation on average is needed if we want to determine
both values of X and Y .

Definition 3. The conditional entropy HðXjY Þ is defined as

HðXjY Þ ¼ �
X
y2Y

P ðyÞ
X
x2X

P ðxjyÞ logP ðxjyÞ:

Conditional entropy describes how much more informa-
tion on average is needed if we want to determine the value
of X when the value of Y is known.

APPENDIX B

ENTROPY OF AN OðkÞ MARKOV PREDICTOR

For an OðkÞ Markov predictor, the prediction conditions on
the most recent k characters. The probability that the next
symbol will be a is

PkðaÞ ¼ bP ðXnþ1 ¼ ajLÞ ¼ bP ðXnþ1 ¼ ajcÞ ¼
Nðca; LÞ
Nðc; LÞ ;

where c is the most recent k symbols, L is the sequence of all
symbols in the history, and Nðs0; sÞ denotes the number of
times the substring s0 occurs in the string s. The predictor
always chooses X ¼ a, which leads to maximum bPkðXÞ as
the prediction.

The conditional entropy is then calculated as

HðAjCÞ ¼ �
X
c2C

P ðcÞ
X
a2A

P ðajcÞ logP ðajcÞ;

where A is a discrete variable choosing from the all possible
symbol set A and C is a discrete variable choosing from the
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possible k-symbol context set C. P ðcÞ is the estimation of the
probability of a given k-symbol context in the whole history:

P ðcÞ ¼ Nðc; LÞP
y2C

Nðy; LÞ :

APPENDIX C

EXAMPLE

In our prediction research, the input to a predictor is a
random variable. Entropy is used to describe the character-
istic of a random variable. As a result, it is independent of
the prediction algorithm. The conditional entropy, however,
depends on the “condition” that we use. As a result, we
have different conditional entropy calculations for different
predictors that use different length contexts.

For example, consider a history L ¼ abacaba from an
alphabet A ¼ fa; b; cg.

For an Oð1Þ Markov predictor, the length-1 context
variable, C, has three possible values, fa; b; cg. We get
P ðC ¼ aÞ ¼ 3=6, P ðC ¼ bÞ ¼ 2=6, and P ðC ¼ cÞ ¼ 1=6 in this
example. We also get P ðbjaÞ ¼ 2=3, P ðcjaÞ ¼ 1=3, P ðajbÞ ¼ 1,
and P ðajcÞ ¼ 1. The conditional entropy considering a
length-1 context for this example is

HðAjCÞ ¼ 3

6

2

3
log2

3

2
þ 1

3
log2 3

� �
þ 2

6
ð1 log 1Þ

þ 1

6
ð1 log 1Þ � 0:46:

For an Oð2Þ Markov predictor, however, the length-2
context set is C ¼ fab; ba; ac; cag. We get P ðC ¼ abÞ ¼ 2=5,
P ðC ¼ baÞ ¼ 1=5, P ðC ¼ acÞ ¼ 1=5, and P ðC ¼ caÞ ¼ 1=5.
We also get the conditional probabilites: P ðajabÞ ¼ 1,
P ðcjbaÞ ¼ 1, P ðajacÞ ¼ 1, and P ðbjcaÞ ¼ 1. The conditional
entropy, considering the length-2 context in this example, is
HðAjCÞ ¼ 2

5 ð1 log 1Þ þ 1
5 ð1 log 1Þ þ 1

5 ð1 log 1Þ þ 1
5 ð1 log 1Þ ¼ 0.
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