5,358 research outputs found

    Decay of Correlations in Fermi Systems at Non-zero Temperature

    Full text link
    The locality of correlation functions is considered for Fermi systems at non-zero temperature. We show that for all short-range, lattice Hamiltonians, the correlation function of any two fermionic operators decays exponentially with a correlation length which is of order the inverse temperature for small temperature. We discuss applications to numerical simulation of quantum systems at non-zero temperature.Comment: 3 pages, 0 figure

    Theory of plasma contactors in ground-based experiments and low Earth orbit

    Get PDF
    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current

    Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States

    Full text link
    We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent and thermal quantities in quantum systems. For time-dependent systems, we modify a previous mapping to quantum circuits to significantly reduce the computer resources required. This modification is based on a principle of "observing" the system outside the light-cone. We apply this method to study spin relaxation in systems started out of equilibrium with initial conditions that give rise to very rapid entanglement growth. We also show that it is possible to approximate time evolution under a local Hamiltonian by a quantum circuit whose light-cone naturally matches the Lieb-Robinson velocity. Asymptotically, these modified methods allow a doubling of the system size that one can obtain compared to direct simulation. We then consider a different problem of thermal properties of disordered spin chains and use quantum belief propagation to average over different configurations. We test this algorithm on one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds, where we can compare to quantum Monte Carlo, and then we apply it to the study of disordered, frustrated spin systems.Comment: 19 pages, 12 figure

    Tip Splittings and Phase Transitions in the Dielectric Breakdown Model: Mapping to the DLA Model

    Full text link
    We show that the fractal growth described by the dielectric breakdown model exhibits a phase transition in the multifractal spectrum of the growth measure. The transition takes place because the tip-splitting of branches forms a fixed angle. This angle is eta dependent but it can be rescaled onto an ``effectively'' universal angle of the DLA branching process. We derive an analytic rescaling relation which is in agreement with numerical simulations. The dimension of the clusters decreases linearly with the angle and the growth becomes non-fractal at an angle close to 74 degrees (which corresponds to eta= 4.0 +- 0.3).Comment: 4 pages, REVTex, 3 figure

    Fractal to Nonfractal Phase Transition in the Dielectric Breakdown Model

    Full text link
    A fast method is presented for simulating the dielectric-breakdown model using iterated conformal mappings. Numerical results for the dimension and for corrections to scaling are in good agreement with the recent RG prediction of an upper critical ηc=4\eta_c=4, at which a transition occurs between branching fractal clusters and one-dimensional nonfractal clusters.Comment: 5 pages, 7 figures; corrections to scaling include

    Assessing Changeability in Aerospace Systems Architecting and Design Using Dynamic Multi-Attribute Tradespace Exploration

    Get PDF
    A framework for assessing changeability in the context of dynamic Multi-Attribute Tradespace Exploration (MATE) is proposed and applied to three aerospace systems. The framework consists of two parts. First, changeability concepts such as flexibility, scalability, and robustness are defined in a value-centric context. These system properties are shown to relate “real-space to value-space” dynamic mappings to stakeholder-defined subjective “acceptable cost” thresholds. Second, network analysis is applied to a series of temporally linked tradespaces, allowing for the quantification of changeability as a decision metric for comparison across system architecture and design options. The quantifiable is defined as the filtered outdegree of each design node in a tradespace network formed by linking design options through explicitly defined prospective transition paths. Each of the system application studies are assessed in the two part framework and within each study, observations are made regarding the changeability of various design options. The three system applications include a hypothetical low Earth orbit satellite mission, a currently deployed weapon system, and a proposed large astronomical on-orbit observatory. Preliminary cross-application observations are made regarding the embedding of changeability into the system architecture or design. Results suggest that the low Earth orbit satellite mission can increase its changeability by having the ability to readily change its orbit. The weapon system can increase its changeability by continuing to embrace modularity, use of commercial off-the-shelf parts (COTS), and simple, excess capacity interfaces. The large astronomical observatory can increase its potential changeability by having the ability to reconfigure its physical payloads and reschedule its observing tasks. The analysis approach introduced in this paper is shown to be a powerful concept for focusing discussion, design, and assessment of the changeability of aerospace systems

    Multi-level, multi-party singlets as ground states and their role in entanglement distribution

    Get PDF
    We show that a singlet of many multi-level quantum systems arises naturally as the ground state of a physically-motivated Hamiltonian. The Hamiltonian simply exchanges the states of nearest-neighbours in some network of qudits (d-level systems); the results are independent of the strength of the couplings or the network's topology. We show that local measurements on some of these qudits project the unmeasured qudits onto a smaller singlet, regardless of the choice of measurement basis at each measurement. It follows that the entanglement is highly persistent, and that through local measurements, a large amount of entanglement may be established between spatially-separated parties for subsequent use in distributed quantum computation.Comment: Corrected method for physical preparatio

    Entropy and Entanglement in Quantum Ground States

    Full text link
    We consider the relationship between correlations and entanglement in gapped quantum systems, with application to matrix product state representations. We prove that there exist gapped one-dimensional local Hamiltonians such that the entropy is exponentially large in the correlation length, and we present strong evidence supporting a conjecture that there exist such systems with arbitrarily large entropy. However, we then show that, under an assumption on the density of states which is believed to be satisfied by many physical systems such as the fractional quantum Hall effect, that an efficient matrix product state representation of the ground state exists in any dimension. Finally, we comment on the implications for numerical simulation.Comment: 7 pages, no figure

    Propagation of Correlations in Quantum Lattice Systems

    Full text link
    We provide a simple proof of the Lieb-Robinson bound and use it to prove the existence of the dynamics for interactions with polynomial decay. We then use our results to demonstrate that there is an upper bound on the rate at which correlations between observables with separated support can accumulate as a consequence of the dynamics.Comment: 10 page

    Strategy & Force Planning: The Case of the Persian Gulf

    Get PDF
    • …
    corecore