4,869 research outputs found
Analysis of a fully packed loop model arising in a magnetic Coulomb phase
The Coulomb phase of spin ice, and indeed the Ic phase of water ice,
naturally realise a fully-packed two-colour loop model in three dimensions. We
present a detailed analysis of the statistics of these loops, which avoid
themselves and other loops of the same colour, and contrast their behaviour to
an analogous two-dimensional model. The properties of another extended degree
of freedom are also addressed, flux lines of the emergent gauge field of the
Coulomb phase, which appear as "Dirac strings" in spin ice. We mention
implications of these results for related models, and experiments.Comment: 5 pages, 4 figure
Conserved Density Fluctuation and Temporal Correlation Function in HTL Perturbation Theory
Considering recently developed Hard Thermal Loop perturbation theory that
takes into account the effect of the variation of the external field through
the fluctuations of a conserved quantity we calculate the temporal component of
the Euclidian correlation function in the vector channel. The results are found
to be in good agreement with the very recent results obtained within the
quenched approximation of QCD and small values of the quark mass ()
on improved lattices of size at (),
(), and (), where is
the temporal extent of the lattice. This suggests that the results from lattice
QCD and Hard Thermal Loop perturbation theory are in close proximity for a
quantity associated with the conserved density fluctuation.Comment: 16 pages, 4 figures; One para added in introduction, Fig 1 modified;
Accepted in Phys. Rev.
Enhancement of the optomechanical coupling and Kerr nonlinearity using the Josephson capacitance of a Cooper-pair box
We propose a scheme for enhancing the optomechanical coupling between microwave and mechanical resonators by up to seven orders of magnitude to the ultrastrong coupling limit in a circuit optomechanical setting. The tripartite system considered here consists of a Josephson junction Cooper-pair box that mediates the coupling between the microwave cavity and the mechanical resonator. The optomechanical coupling can be modified by tuning the gate charge and the magnetic flux bias of the Cooper-pair box which in turn affect the Josephson capacitance of the Cooper-pair box. We additionally show that with a suitable choice of tuning parameters, the optomechanical coupling vanishes and the system purely exhibits a cross-Kerr type of nonlinearity between the cavity and the mechanical resonator. This allows the system to be used for phonon counting
A Review on Power Quality Improvement via Custom Power Devices
Power Quality has been said a set of electrical boundaries of the electrical supply provided under normal operating condition that allow equipment to function in its rated condition without significant loss of performance and life expectancy that do not disturb or disrupt the consumers\u27 process. Performance degradation results when the electrical power supplied to equipment is deficient. Thus power quality improvement is the main concern of present era. The problems of power quality are rising exponentially from the last few decades due to the rising demand for power and the need for their improvement is indeed a big question. The main power quality problems such as voltage sags and swells, power interruptions (short and long), voltage spike, harmonic distortion, noise have led to financial losses. To avoid huge losses and to overcome the above mentioned problems, power electronics has evolved with its new types of devices known as Custom Power Devices which are being reviewed in this paper
A novel hybrid password authentication scheme based on text and image
Considering the popularity and wide deployment of text passwords, we predict that they will be used as a prevalent authentication mechanism for many years to come. Thus, we have carried out studies on mechanisms to enhance text passwords. These studies suggest that password space and memorability should be improved, with an additional mechanism based on images. The combination of text and images increases resistance to some password attacks, such as brute force and observing attacks. We propose a hybrid authentication scheme integrating text and recognition-based graphical passwords. This authentication scheme can reduce the phishing attacks because if users are deceived to share their key passwords, there is still a chance to save the complete password as attackers do not know the users' image preferences. In addition to the security aspect, the proposed authentication scheme increases memorability as it does not require users to remember long and complex passwords. Thus, with the proposed scheme users will be able to create strong passwords without sacrificing usability. The hybrid scheme also offers an enjoyable sign-in/log-in experience to users
The problematic backreaction of SUSY-breaking branes
In this paper we investigate the localisation of SUSY-breaking branes which,
in the smeared approximation, support specific non-BPS vacua. We show, for a
wide class of boundary conditions, that there is no flux vacuum when the branes
are described by a genuine delta-function. Even more, we find that the smeared
solution is the unique solution with a regular brane profile. Our setup
consists of a non-BPS AdS_7 solution in massive IIA supergravity with smeared
anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.Comment: 27 pages, Latex2e, 5 figure
Universal de Sitter solutions at tree-level
Type IIA string theory compactified on SU(3)-structure manifolds with
orientifolds allows for classical de Sitter solutions in four dimensions. In
this paper we investigate these solutions from a ten-dimensional point of view.
In particular, we demonstrate that there exists an attractive class of de
Sitter solutions, whose geometry, fluxes and source terms can be entirely
written in terms of the universal forms that are defined on all SU(3)-structure
manifolds. These are the forms J and Omega, defining the SU(3)-structure
itself, and the torsion classes. The existence of such universal de Sitter
solutions is governed by easy-to-verify conditions on the SU(3)-structure,
rendering the problem of finding dS solutions purely geometrical. We point out
that the known (unstable) solution coming from the compactification on SU(2)x
SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference
Remove Noise in Video with 3D Topological Maps
International audienceIn this paper we present a new method for foreground masks denoising in videos. Our main idea is to consider videos as 3D images and to deal with regions in these images. Denoising is thus simply achieved by merging foreground regions corresponding to noise with background regions. In this framework, the main question is the definition of a cri-terion allowing to decide if a region corresponds to noise or not. Thanks to our complete cellular description of 3D images, we can propose an advanced criterion based on Betti numbers, a topological invariant. Our results show the interest of our approach which gives better results than previous methods
- …