312 research outputs found

    Quasi-circular orbits of conformal thin-sandwich puncture binary black holes

    Full text link
    I construct initial data for equal-mass irrotational binary black holes using the conformal thin-sandwich puncture (CTSP) approach. I locate quasi-circular orbits using the effective-potential method, and estimate the location of the innermost stable circular orbit (ISCO). The ISCO prediction is consistent with results for conformal thin-sandwich data produced using excision techniques. These results also show that the ISCOs predicted by the effective-potential and ADM-Komar mass-comparison methods agree for conformal thin-sandwich data, just as they did for Bowen-York data.Comment: 7 pages, 1 figure. Added discussion of the Komar mass, and slight modifications for published versio

    Conformal thin-sandwich puncture initial data for boosted black holes

    Full text link
    We apply the puncture approach to conformal thin-sandwich black-hole initial data. We solve numerically the conformal thin-sandwich puncture (CTSP) equations for a single black hole with non-zero linear momentum. We show that conformally flat solutions for a boosted black hole have the same maximum gravitational radiation content as the corresponding Bowen-York solution in the conformal transverse-traceless decomposition. We find that the physical properties of these data are independent of the free slicing parameter.Comment: 12 pages, 11 figure

    Beyond the Bowen-York extrinsic curvature for spinning black holes

    Get PDF
    It is well-known that Bowen-York initial data contain spurious radiation. Although this ``junk'' radiation has been seen to be small for non-spinning black-hole binaries in circular orbit, its magnitude increases when the black holes are given spin. It is possible to reduce the spurious radiation by applying the puncture approach to multiple Kerr black holes, as we demonstrate for examples of head-on collisions of equal-mass black-hole binaries.Comment: 10 pages, 2 figures, submitted to special "New Frontiers in Numerical Relativity" issue of Classical and Quantum Gravit

    Observable frequency shifts via spin-rotation coupling

    Get PDF
    DOI: 10.1016/S0375-9601(98)00729-4The phase perturbation arising from spin-rotation coupling is developed as a natural extension of the celebrated Sagnac effect. Experimental evidence in support of this phase shift, however, has yet to be realized due to the exceptional sensitivity required. We draw attention to the relevance of a series of experiments establishing that circularly polarized light, upon passing through a rotating half-wave plate, is changed in frequency by twice the rotation rate. These experiments may be interpreted as demonstrating the role of spin-rotation coupling in inducing this frequency shift, thus providing direct empirical verification of the coupling of the photon helicity to rotation. A neutron interferometry experiment is proposed which would be sensitive to an analogous frequency shift for fermions. In this arrangement, polarized neutrons enter an interferometer containing two spin flippers, one of which is rotating while the other is held stationary. An observable beating in the transmitted neutron beam intensity is predicted

    Binary black holes on a budget: Simulations using workstations

    Get PDF
    Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the center of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m^2= 0.75. Our results compare favorably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods.Comment: 20 pages, 8 figures. Final version, to appear in a special issue of Class. Quantum Grav. based on the New Frontiers in Numerical Relativity Conference, Golm, July 200

    Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis

    Get PDF
    We study the inspiral, merger and ringdown of unequal mass black hole binaries by analyzing a catalogue of numerical simulations for seven different values of the mass ratio (from q=M2/M1=1 to q=4). We compare numerical and Post-Newtonian results by projecting the waveforms onto spin-weighted spherical harmonics, characterized by angular indices (l,m). We find that the Post-Newtonian equations predict remarkably well the relation between the wave amplitude and the orbital frequency for each (l,m), and that the convergence of the Post-Newtonian series to the numerical results is non-monotonic. To leading order the total energy emitted in the merger phase scales like eta^2 and the spin of the final black hole scales like eta, where eta=q/(1+q)^2 is the symmetric mass ratio. We study the multipolar distribution of the radiation, finding that odd-l multipoles are suppressed in the equal mass limit. Higher multipoles carry a larger fraction of the total energy as q increases. We introduce and compare three different definitions for the ringdown starting time. Applying linear estimation methods (the so-called Prony methods) to the ringdown phase, we find resolution-dependent time variations in the fitted parameters of the final black hole. By cross-correlating information from different multipoles we show that ringdown fits can be used to obtain precise estimates of the mass and spin of the final black hole, which are in remarkable agreement with energy and angular momentum balance calculations.Comment: 51 pages, 28 figures, 16 tables. Many improvements throughout the text in response to the referee report. The calculation of multipolar components in Appendix A now uses slightly different conventions. Matches version in press in PR

    The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection

    Get PDF
    We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the (ℓ=2,∣m∣=2)(\ell=2,| m | =2) mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code's uncertainty estimates. The mismatch between the (ℓ=2,∣m∣=2)(\ell=2,| m| =2) modes is better than 10−310^{-3} for binary masses above 60M⊙60 M_{\odot} with respect to the Enhanced LIGO detector noise curve, and for masses above 180M⊙180 M_{\odot} with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below 2×10−42 \times 10^{-4}. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider) if detected with a signal-to-noise ratio of less than ≈14\approx14, or less than ≈25\approx25 in the best cases.Comment: 17 pages, 9 figures. Version accepted by PR

    Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?

    Get PDF
    We consider combining two important methods for constructing quasi-equilibrium initial data for binary black holes: the conformal thin-sandwich formalism and the puncture method. The former seeks to enforce stationarity in the conformal three-metric and the latter attempts to avoid internal boundaries, like minimal surfaces or apparent horizons. We show that these two methods make partially conflicting requirements on the boundary conditions that determine the time slices. In particular, it does not seem possible to construct slices that are quasi-stationary and avoid physical singularities and simultaneously are connected by an everywhere positive lapse function, a condition which must obtain if internal boundaries are to be avoided. Some relaxation of these conflicting requirements may yield a soluble system, but some of the advantages that were sought in combining these approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure

    Reducing orbital eccentricity in binary black hole simulations

    Get PDF
    Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but non-zero orbital eccentricities. In this paper the quasi-equilibrium initial-data method is extended to allow non-zero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting (∼5\sim 5 orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964). The gravitational waveforms, which contain ∼8\sim 8 cycles in the dominant l=m=2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the "New Frontiers" special issue of CQ

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
    • …
    corecore