312 research outputs found
Quasi-circular orbits of conformal thin-sandwich puncture binary black holes
I construct initial data for equal-mass irrotational binary black holes using
the conformal thin-sandwich puncture (CTSP) approach. I locate quasi-circular
orbits using the effective-potential method, and estimate the location of the
innermost stable circular orbit (ISCO). The ISCO prediction is consistent with
results for conformal thin-sandwich data produced using excision techniques.
These results also show that the ISCOs predicted by the effective-potential and
ADM-Komar mass-comparison methods agree for conformal thin-sandwich data, just
as they did for Bowen-York data.Comment: 7 pages, 1 figure. Added discussion of the Komar mass, and slight
modifications for published versio
Conformal thin-sandwich puncture initial data for boosted black holes
We apply the puncture approach to conformal thin-sandwich black-hole initial
data. We solve numerically the conformal thin-sandwich puncture (CTSP)
equations for a single black hole with non-zero linear momentum. We show that
conformally flat solutions for a boosted black hole have the same maximum
gravitational radiation content as the corresponding Bowen-York solution in the
conformal transverse-traceless decomposition. We find that the physical
properties of these data are independent of the free slicing parameter.Comment: 12 pages, 11 figure
Beyond the Bowen-York extrinsic curvature for spinning black holes
It is well-known that Bowen-York initial data contain spurious radiation.
Although this ``junk'' radiation has been seen to be small for non-spinning
black-hole binaries in circular orbit, its magnitude increases when the black
holes are given spin. It is possible to reduce the spurious radiation by
applying the puncture approach to multiple Kerr black holes, as we demonstrate
for examples of head-on collisions of equal-mass black-hole binaries.Comment: 10 pages, 2 figures, submitted to special "New Frontiers in Numerical
Relativity" issue of Classical and Quantum Gravit
Observable frequency shifts via spin-rotation coupling
DOI: 10.1016/S0375-9601(98)00729-4The phase perturbation arising from spin-rotation coupling is developed as a natural extension of the celebrated Sagnac effect. Experimental evidence in support of this phase shift, however, has yet to be realized due to the exceptional sensitivity required. We draw attention to the relevance of a series of experiments establishing that circularly polarized light, upon passing through a rotating half-wave plate, is changed in frequency by twice the rotation rate. These experiments may be interpreted as demonstrating the role of spin-rotation coupling in inducing this frequency shift, thus providing direct empirical verification of the coupling of the photon helicity to rotation. A neutron interferometry experiment is proposed which would be sensitive to an analogous frequency shift for fermions. In this arrangement, polarized neutrons enter an interferometer containing two spin flippers, one of which is rotating while the other is held stationary. An observable beating in the transmitted neutron beam intensity is predicted
Binary black holes on a budget: Simulations using workstations
Binary black hole simulations have traditionally been computationally very
expensive: current simulations are performed in supercomputers involving dozens
if not hundreds of processors, thus systematic studies of the parameter space
of binary black hole encounters still seem prohibitive with current technology.
Here we show how the multi-layered refinement level code BAM can be used on
dual processor workstations to simulate certain binary black hole systems. BAM,
based on the moving punctures method, provides grid structures composed of
boxes of increasing resolution near the center of the grid. In the case of
binaries, the highest resolution boxes are placed around each black hole and
they track them in their orbits until the final merger when a single set of
levels surrounds the black hole remnant. This is particularly useful when
simulating spinning black holes since the gravitational fields gradients are
larger. We present simulations of binaries with equal mass black holes with
spins parallel to the binary axis and intrinsic magnitude of S/m^2= 0.75. Our
results compare favorably to those of previous simulations of this particular
system. We show that the moving punctures method produces stable simulations at
maximum spatial resolutions up to M/160 and for durations of up to the
equivalent of 20 orbital periods.Comment: 20 pages, 8 figures. Final version, to appear in a special issue of
Class. Quantum Grav. based on the New Frontiers in Numerical Relativity
Conference, Golm, July 200
Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis
We study the inspiral, merger and ringdown of unequal mass black hole
binaries by analyzing a catalogue of numerical simulations for seven different
values of the mass ratio (from q=M2/M1=1 to q=4). We compare numerical and
Post-Newtonian results by projecting the waveforms onto spin-weighted spherical
harmonics, characterized by angular indices (l,m). We find that the
Post-Newtonian equations predict remarkably well the relation between the wave
amplitude and the orbital frequency for each (l,m), and that the convergence of
the Post-Newtonian series to the numerical results is non-monotonic. To leading
order the total energy emitted in the merger phase scales like eta^2 and the
spin of the final black hole scales like eta, where eta=q/(1+q)^2 is the
symmetric mass ratio. We study the multipolar distribution of the radiation,
finding that odd-l multipoles are suppressed in the equal mass limit. Higher
multipoles carry a larger fraction of the total energy as q increases. We
introduce and compare three different definitions for the ringdown starting
time. Applying linear estimation methods (the so-called Prony methods) to the
ringdown phase, we find resolution-dependent time variations in the fitted
parameters of the final black hole. By cross-correlating information from
different multipoles we show that ringdown fits can be used to obtain precise
estimates of the mass and spin of the final black hole, which are in remarkable
agreement with energy and angular momentum balance calculations.Comment: 51 pages, 28 figures, 16 tables. Many improvements throughout the
text in response to the referee report. The calculation of multipolar
components in Appendix A now uses slightly different conventions. Matches
version in press in PR
The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection
We quantify the consistency of numerical-relativity black-hole-binary
waveforms for use in gravitational-wave (GW) searches with current and planned
ground-based detectors. We compare previously published results for the
mode of the gravitational waves from an equal-mass
nonspinning binary, calculated by five numerical codes. We focus on the 1000M
(about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the
subsequent ringdown. We find that the phase and amplitude agree within each
code's uncertainty estimates. The mismatch between the modes
is better than for binary masses above with respect to
the Enhanced LIGO detector noise curve, and for masses above
with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms
with the best agreement, the mismatch is below . We find that
the waveforms would be indistinguishable in all ground-based detectors (and for
the masses we consider) if detected with a signal-to-noise ratio of less than
, or less than in the best cases.Comment: 17 pages, 9 figures. Version accepted by PR
Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?
We consider combining two important methods for constructing
quasi-equilibrium initial data for binary black holes: the conformal
thin-sandwich formalism and the puncture method. The former seeks to enforce
stationarity in the conformal three-metric and the latter attempts to avoid
internal boundaries, like minimal surfaces or apparent horizons. We show that
these two methods make partially conflicting requirements on the boundary
conditions that determine the time slices. In particular, it does not seem
possible to construct slices that are quasi-stationary and avoid physical
singularities and simultaneously are connected by an everywhere positive lapse
function, a condition which must obtain if internal boundaries are to be
avoided. Some relaxation of these conflicting requirements may yield a soluble
system, but some of the advantages that were sought in combining these
approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure
Reducing orbital eccentricity in binary black hole simulations
Binary black hole simulations starting from quasi-circular (i.e., zero radial
velocity) initial data have orbits with small but non-zero orbital
eccentricities. In this paper the quasi-equilibrium initial-data method is
extended to allow non-zero radial velocities to be specified in binary black
hole initial data. New low-eccentricity initial data are obtained by adjusting
the orbital frequency and radial velocities to minimize the orbital
eccentricity, and the resulting ( orbit) evolutions are compared with
those of quasi-circular initial data. Evolutions of the quasi-circular data
clearly show eccentric orbits, with eccentricity that decays over time. The
precise decay rate depends on the definition of eccentricity; if defined in
terms of variations in the orbital frequency, the decay rate agrees well with
the prediction of Peters (1964). The gravitational waveforms, which contain
cycles in the dominant l=m=2 mode, are largely unaffected by the
eccentricity of the quasi-circular initial data. The overlap between the
dominant mode in the quasi-circular evolution and the same mode in the
low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the
"New Frontiers" special issue of CQ
Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a
joint effort between members of the numerical relativity, analytical relativity
and gravitational-wave data analysis communities. The goal of the NRAR
collaboration is to produce numerical-relativity simulations of compact
binaries and use them to develop accurate analytical templates for the
LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and
extracting astrophysical information from them. We describe the results of the
first stage of the NRAR project, which focused on producing an initial set of
numerical waveforms from binary black holes with moderate mass ratios and
spins, as well as one non-spinning binary configuration which has a mass ratio
of 10. All of the numerical waveforms are analysed in a uniform and consistent
manner, with numerical errors evaluated using an analysis code created by
members of the NRAR collaboration. We compare previously-calibrated,
non-precessing analytical waveforms, notably the effective-one-body (EOB) and
phenomenological template families, to the newly-produced numerical waveforms.
We find that when the binary's total mass is ~100-200 solar masses, current EOB
and phenomenological models of spinning, non-precessing binary waveforms have
overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary
numerical waveforms with mass ratios <= 4, when maximizing over binary
parameters. This implies that the loss of event rate due to modelling error is
below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to
five non-spinning waveforms with mass ratio smaller than 6 have overlaps above
99.7% with the numerical waveform with a mass ratio of 10, without even
maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
- …