5,793 research outputs found

    A planetary companion around the K giant eps Corona Borealis

    Full text link
    Aims. Our aim is to search for and study the origin of the low-amplitude and long-periodic radial velocity (RV) variations in K giants. Methods. We present high-resolution RV measurements of K2 giant epsilon CrB from February 2005 to January 2012 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Results. We find that the RV measurements for epsilon CrB exhibit a periodic variation of 417.9 +/- 0.5 days with a semi-amplitude of 129.4 +/- 2.0 m/s. There is no correlation between RV measurements and chromospheric activity in the Ca II H region, the Hipparcos photometry, or bisector velocity span. Conclusions. Keplerian motion is the most likely explanation, with the RV variations arising from an orbital motion. Assuming a possible stellar mass of 1.7 +/- 0.1 M_Sun for epsilon CrB, we obtain a minimum mass for the planetary companion of 6.7 +/- 0.3 M_Jup with an orbital semi-major axis of 1.3 AU and eccentricity of 0.11. We also discuss the implications of our observations for stellar metallicity versus planet occurrence rate and stellar mass versus planetary mass relations.Comment: 5 pages, 7 figures, 3 tables, accepted for publisation in Astronomy & Astrophysic

    The Physics of Kondo Impurities in Graphene

    Full text link
    This article summarizes our understanding of the Kondo effect in graphene, primarily from a theoretical perspective. We shall describe different ways to create magnetic moments in graphene, either by adatom deposition or via defects. For dilute moments, the theoretical description is in terms of effective Anderson or Kondo impurity models coupled to graphene's Dirac electrons. We shall discuss in detail the physics of these models, including their quantum phase transitions and the effect of carrier doping, and confront this with existing experimental data. Finally, we point out connections to other quantum impurity problems, e.g., in unconventional superconductors, topological insulators, and quantum spin liquids.Comment: 27 pages, 8 figs. Review article prepared for Rep. Prog. Phys. ("key issues" section). (v2) Final version as publishe

    A mathematical model of tumour & blood pHe regulation: The HCO-3/CO2 buffering system

    Get PDF
    Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the View the MathML source buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe

    Proton and Helium Spectra from the CREAM-III Flight

    Full text link
    Primary cosmic-ray elemental spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The third CREAM payload (CREAM-III) flew for 29 days during the 2007-2008 Antarctic season. Energies of incident particles above 1 TeV are measured with a calorimeter. Individual elements are clearly separated with a charge resolution of ~0.12 e (in charge units) and ~0.14 e for protons and helium nuclei, respectively, using two layers of silicon charge detectors. The measured proton and helium energy spectra at the top of the atmosphere are harder than other existing measurements at a few tens of GeV. The relative abundance of protons to helium nuclei is 9.53+-0.03 for the range of 1 TeV/n to 63 TeV/n. The ratio is considerably smaller than other measurements at a few tens of GeV/n. The spectra become softer above ~20 TeV. However, our statistical uncertainties are large at these energies and more data are needed

    Two-photon final states in peripheral heavy ion collisions

    Get PDF
    We discuss processes leading to two photon final states in peripheral heavy ion collisions at RHIC. Due to the large photon luminosity we show that the continuum subprocess γγ→γγ\gamma \gamma \to \gamma \gamma can be observed with a large number of events. We study this reaction when it is intermediated by a resonance made of quarks or gluons and discuss its interplay with the continuum process, verifying that in several cases the resonant process ovewhelms the continuum one. It is also investigated the possibility of observing a scalar resonance (the σ\sigma meson) in this process. Assuming for the σ\sigma the mass and total decay width values recently reported by the E791 Collaboration we show that RHIC may detect this particle in its two photon decay mode if its partial photonic decay width is of the order of the ones discussed in the literature.Comment: 10 pages, 8 figure

    Multimorbidity in bipolar disorder and under-treatment of cardiovascular disease: a cross sectional study

    Get PDF
    Background: Individuals with serious mental disorders experience poor physical health, especially increased rates of cardiometabolic morbidity and premature morbidity. Recent evidence suggests that individuals with schizophrenia have numerous comorbid physical conditions which may be under-recorded and under-treated but to date very few studies have explored this issue for bipolar disorder. Methods:We conducted a cross-sectional analysis of a dataset of 1,751,841 registered patients within 314 primary-care practices in Scotland, U.K. Bipolar disorder was identified using Read Codes recorded within electronic medical records. Data on 32 common chronic physical conditions were also assessed. Potential prescribing inequalities were evaluated by analyzing prescribing data for coronary heart disease (CHD) and hypertension. Results: Compared to controls, individuals with bipolar disorder were significantly less likely to have no recorded physical conditions (OR 0.59, 95% CI 0.54-0.63) and significantly more likely to have one physical condition (OR 1.27, 95% CI 1.16-1.39), two physical conditions (OR 1.45, 95% CI 1.30-1.62) and three or more physical conditions (OR 1.44, 95% CI 1.30-1.64). People with bipolar disorder also had higher rates of thyroid disorders, chronic kidney disease, chronic pain, chronic obstructive airways disease and diabetes but, surprisingly, lower recorded rates of hypertension and atrial fibrillation. People with bipolar disorder and comorbid CHD or hypertension were significantly more likely to be prescribed no antihypertensive or cholesterol-lowering medications compared to controls, and bipolar individuals with CHD or hypertension were significantly less likely to be on 2 or more antihypertensive agents. Conclusions: Individuals with bipolar disorder are similar to individuals with schizophrenia in having a wide range of comorbid and multiple physical health conditions. They are also less likely than controls to have a primary-care record of cardiovascular conditions such as hypertension and atrial fibrillation. Those with a recorded diagnosis of CHD or hypertension were less likely to be treated with cardiovascular medications and were treated less intensively. This study highlights the high physical healthcare needs of people with bipolar disorder, and provides evidence for a systematic under-recognition and under-treatment of cardiovascular disease in this group

    Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation.

    Get PDF
    The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Å using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    The Impact of Simulated Sulfate Deposition on Peatland Testate Amoebae

    Get PDF
    Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples extracted after a period of more than 10 years. Impacts on testate amoebae were tested using redundancy analysis and Mann-Whitney tests. Results showed statistically significant impacts on amoebae communities particularly noted by decreased abundance of Trinema lineare, Corythion dubium, and Euglypha rotunda. As the species most reduced in abundance are all small bacterivores we suggest that our results support the hypothesis of a shift in dominant prokaryotes, although other explanations are possible. Our results demonstrate the sensitivity of peatland microbial communities to sulfate deposition and suggest sulfate may be a potentially important secondary control on testate amoebae communities

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity
    • …
    corecore