554 research outputs found
The impact of exchanging the light and heavy chains on the structures of bovine ultralong antibodies
The third complementary‐determining regions of the heavy‐chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form β‐ribbon stalks that protrude from the surface of the antibody with a disulfide cross‐linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B‐cell sequencing, has been determined to 1.6 Å resolution. By swapping the D08 native light chain with that of an unrelated antigen‐unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallographic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing
Foot health education for people with rheumatoid arthritis : the practitioner's perspective
Background: Patient education is considered to be a key role for podiatrists in the management of patients with rheumatoid arthritis (RA). Patient education has undoubtedly led to improved clinical outcomes, however no attempts have been made to optimise its content or delivery to maximise benefits within the context of the foot affected by rheumatoid arthritis. The aim of this study was to identify the nature and content of podiatrists' foot health education for people with RA. Any potential barriers to its provision were also explored.
Methods: A focus group was conducted. The audio dialogue was recorded digitally, transcribed verbatim and analysed using a structured, thematic approach. The full transcription was verified by the focus group as an accurate account of what was said. The thematic analysis framework was verified by members of the research team to ensure validity of the data.
Results: Twelve members (all female) of the north west Podiatry Clinical Effectiveness Group for Rheumatology participated. Six overarching themes emerged: (i) the essence of patient education; (ii) the content; (iii) patient-centred approach to content and timing; (iv) barriers to provision; (v) the therapeutic relationship; and (vi) tools of the trade.
Conclusion: The study identified aspects of patient education that this group of podiatrists consider most important in relation to its: content, timing, delivery and barriers to its provision. General disease and foot health information in relation to RA together with a potential prognosis for foot health, the role of the podiatrist in management of foot health, and appropriate self-management strategies were considered to be key aspects of content, delivered according to the needs of the individual. Barriers to foot health education provision, including financial constraints and difficulties in establishing effective therapeutic relationships, were viewed as factors that strongly influenced foot health education provision. These data will contribute to the development of a patient-centred, negotiated approach to the provision of foot health education for people with RA
The effects of terlipressin and direct portacaval shunting on liver hemodynamics following 80% hepatectomy in the pig
Liver failure is the major cause of death following liver resection. Post-resection portal venous pressure (PVP) predicts liver failure, is implicated in its pathogenesis, and when PVP is reduced, rates of liver dysfunction decrease. The aim of the present study was to characterize the hemodynamic, biochemical, and histological changes induced by 80% hepatectomy in non-cirrhotic pigs and determine if terlipressin or direct portacaval shunting can modulate these effects. Pigs were randomized (n=8/group) to undergo 80% hepatectomy alone (control); terlipressin (2 mg bolus + 0.5–1 mg/h) + 80% hepatectomy; or portacaval shunt (PCS) + 80% hepatectomy, and were maintained under terminal anesthesia for 8 h. The primary outcome was changed in PVP. Secondary outcomes included portal venous flow (PVF), hepatic arterial flow (HAF), and biochemical and histological markers of liver injury. Hepatectomy increased PVP (9.3 ± 0.4 mmHg pre-hepatectomy compared with 13.0 ± 0.8 mmHg post-hepatectomy, P<0.0001) and PVF/g liver (1.2 ± 0.2 compared with 6.0 ± 0.6 ml/min/g, P<0.0001) and decreased HAF (70.8 ± 5.0 compared with 41.8 ± 5.7 ml/min, P=0.002). Terlipressin and PCS reduced PVP (terlipressin = 10.4 ± 0.8 mmHg, P=0.046 and PCS = 8.3 ± 1.2 mmHg, P=0.025) and PVF (control = 869.0 ± 36.1 ml/min compared with terlipressin = 565.6 ± 25.7 ml/min, P<0.0001 and PCS = 488.4 ± 106.4 ml/min, P=0.002) compared with control. Treatment with terlipressin increased HAF (73.2 ± 11.3 ml/min) compared with control (40.3 ± 6.3 ml/min, P=0.026). The results of the present study suggest that terlipressin and PCS may have a role in the prevention and treatment of post-resection liver failure
Recommended from our members
Genetic and physiological responses to heat stress in Brassica napus
Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. Brassica napus, the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of B. napus with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of B. napus and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in B. napus, opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of B. napus, to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on B. napus during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops
Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget
Globally, large-bodied wild mammals are in peril. Because “megamammals” have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes inmethane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∼200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation ofmegaherbivores reduced global enteric emissions between 2.2–69.6 Tg CH4 y−1 during the various time periods, representing a decrease of 0.8–34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate
The tobacco industry’s past role in weight control related to smoking
Background: Smoking is thought to produce an appetite-suppressing effect by many smokers. Thus, the fear of body weight gain often outweighs the perception of health benefits associated with smoking cessation, particularly in adolescents. We examined whether the tobacco industry played a role in appetite and body weight control related to smoking and smoking cessation. Methods: We performed a systematic search within the archives of six major US and UK tobacco companies (American Tobacco, Philip Morris, RJ Reynolds, Lorillard, Brown & Williamson and British American Tobacco) that were Defendants in tobacco litigation settled in 1998. Findings are dated from 1949 to 1999. Results: The documents revealed the strategies planned and used by the industry to enhance effects of smoking on weight and appetite, mostly by chemical modifications of cigarettes contents. Appetite-suppressant molecules, such as tartaric acid and 2-acetylpyridine were added to some cigarettes. Conclusion: These tobacco companies played an active and not disclaimed role in the anti-appetite effects of smoking, at least in the past, by adding appetite-suppressant molecules into their cigarettes
Identification of sex hormone-binding globulin in the human hypothalamus
Gonadal steroids are known to influence hypothalamic functions through both genomic and non-genomic pathways. Sex hormone-binding globulin ( SHBG) may act by a non-genomic mechanism independent of classical steroid receptors. Here we describe the immunocytochemical mapping of SHBG-containing neurons and nerve fibers in the human hypothalamus and infundibulum. Mass spectrometry and Western blot analysis were also used to characterize the biochemical characteristics of SHBG in the hypothalamus and cerebrospinal fluid (CSF) of humans. SHBG-immunoreactive neurons were observed in the supraoptic nucleus, the suprachiasmatic nucleus, the bed nucleus of the stria terminalis, paraventricular nucleus, arcuate nucleus, the perifornical region and the medial preoptic area in human brains. There were SHBG-immunoreactive axons in the median eminence and the infundibulum. A partial colocalization with oxytocin could be observed in the posterior pituitary lobe in consecutive semithin sections. We also found strong immunoreactivity for SHBG in epithelial cells of the choroid plexus and in a portion of the ependymal cells lining the third ventricle. Mass spectrometry showed that affinity-purified SHBG from the hypothalamus and choroid plexus is structurally similar to the SHBG identified in the CSF. The multiple localizations of SHBG suggest neurohypophyseal and neuroendocrine functions. The biochemical data suggest that CSF SHBG is of brain rather than blood origin. Copyright (c) 2005 S. Karger AG, Base
Crystal growth of the acentric organic nonlinear optical material methyl-p-hydroxybenzoate : morphological variations in crystals grown by physical vapor transport
Single crystals of the acentric compound methyl-p-hydroxybenzoate were grown by self-nucleation and seeded growth from the vapor phase by the physical vapor transport (PVT) process. In the temperature range of 80-95 °C (nucleation supersaturation 0.97 to 0.88), all crystals were of the polymorphic form as produced by room-temperature solution growth. Self-nucleated crystals varied in macromorphology from columnar to octahedral to skewed octahedral and finally to skewed columnar but retained the same crystal forms indicated by theoretical calculations. Micromorphological studies of growth faces indicated that these variations result from changes in growth mechanisms that influence both the defect structure and perfection of the growing crystal. X-ray topographic studies confirmed that growth under the most ideal conditions, when the dominant faces of the crystals were growing by a dislocation induced Burton, Cabrera, and Frank mechanism, yielded the structurally most perfect crystals. Preliminary studies of seeded growth were performed as a prelude to using PVT for the growth of larger crystals. The seeded growth followed a different pattern of supersaturation dependence. All crystals showed the same asymmetric growth along the polar axis that has come to be regarded as characteristic of these highly polar acentric materials when grown from solution
Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease
BACKGROUND: Scales are mineralised exoskeletal structures that are part of the dermal skeleton. Scales have been mostly lost during evolution of terrestrial vertebrates whilst bony fish have retained a mineralised dermal skeleton in the form of fin rays and scales. Each scale is a mineralised collagen plate that is decorated with both matrix-building and resorbing cells. When removed, an ontogenetic scale is quickly replaced following differentiation of the scale pocket-lining cells that regenerate a scale. Processes promoting de novo matrix formation and mineralisation initiated during scale regeneration are poorly understood. Therefore, we performed transcriptomic analysis to determine gene networks and their pathways involved in dermal scale regeneration. RESULTS: We defined the transcriptomic profiles of ontogenetic and regenerating scales of zebrafish and identified 604 differentially expressed genes (DEGs). These were enriched for extracellular matrix, ossification, and cell adhesion pathways, but not in enamel or dentin formation processes indicating that scales are reminiscent to bone. Hypergeometric tests involving monogenetic skeletal disorders showed that DEGs were strongly enriched for human orthologues that are mutated in low bone mass and abnormal bone mineralisation diseases (P< 2× 10(−3)). The DEGs were also enriched for human orthologues associated with polygenetic skeletal traits, including height (P< 6× 10(−4)), and estimated bone mineral density (eBMD, P< 2× 10(−5)). Zebrafish mutants of two human orthologues that were robustly associated with height (COL11A2, P=6× 10(−24)) or eBMD (SPP1, P=6× 10(−20)) showed both exo- and endo- skeletal abnormalities as predicted by our genetic association analyses; col11a2(Y228X/Y228X) mutants showed exoskeletal and endoskeletal features consistent with abnormal growth, whereas spp1(P160X/P160X) mutants predominantly showed mineralisation defects. CONCLUSION: We show that scales have a strong osteogenic expression profile comparable to other elements of the dermal skeleton, enriched in genes that favour collagen matrix growth. Despite the many differences between scale and endoskeletal developmental processes, we also show that zebrafish scales express an evolutionarily conserved sub-population of genes that are relevant to human skeletal disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-021-01209-8
Taiwanese Preservice Teachers’ Science, Technology, Engineering, and Mathematics Teaching Intention
This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139) collected information on the behavioral intention of preservice science teachers engaging in STEM education. Data were analyzed using descriptive statistics, path analysis, and analysis of variance. Results revealed that, in terms of direct effects, higher perceived behavioral control and subjective norms were associated with stronger STEM teaching intention. More positive attitude and greater knowledge were indirectly associated with higher subjective norms and perceived behavioral control, which resulted in stronger STEM teaching intention. Additionally, gender did not affect preservice teachers’ intention to adopt STEM teaching approaches. However, preservice teachers whose specialization was in different fields tended to influence their knowledge and perceived behavioral control; these issues require further investigation
- …