14 research outputs found

    Plastic litter in the European Arctic: What do we know?

    No full text
    Despite an exponential increase in available data on marine plastic debris globally, information on levels and trends of plastic pollution and especially microplastics in the Arctic remains scarce. The few available peer-reviewed scientific works, however, point to a ubiquitous distribution of plastic particles in all environmental compartments, including sea ice. Here, we review the current state of knowledge on the sources, distribution, transport pathways and fate of meso- and microplastics with a focus on the European Arctic and discuss observed and projected impacts on biota and ecosystems

    Effet de la température sur la reproduction et le développement d'espèces de copépodes marins congénériques (clé pour l'interprétation des types de distribution ?)

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocPARIS-BIUSJ-Thèses (751052125) / SudocBANYULS/MER-Observ.Océanol. (660162201) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Time series of zooplankton abundance at station L4 in the English Channel from 1988 to 2011

    No full text
    Ongoing zooplankton research at the Plymouth Marine Laboratory has established a time series of zooplankton species since 1988 at L4, a coastal station off Plymouth. Samples were collected by vertical net hauls (WP2 net, mesh 200 µm; UNESCO 1968) from the sea floor (approximately 50 m) to the surface and stored in 4% formalin. Much of the zooplankton analysis has been to the level of "major taxonomic groups" only, and a number of different analysts have participated over the years. The level of expertise has generally been consistent, but the user should be aware that levels of taxonomic discrimination may vary during the course of the dataset. The dominant calanoid copepods are generally well discriminated to species throughout. Calanus has not been routinely examined for species determination, the assumption being that the local population is entirely composed of Calanus helgolandicus. In certain years there has been a particular interest in Temora stylifera, Centropages cherchiae and other species reflected in the dataset. The lack of records in other previous years does not necessarily reflect species absence. We view it as essential for all users of L4 plankton data to establish and maintain contact with the nominated current data originators as well as fully consulting the metadata. While not impinging on free data access, this ensures that this large, species-rich but slightly complex species database is being used in the correct way, and any potential issues with the data are clarified. Furthermore, a proper dialogue with these local experts on the time series will enable where appropriate the most recent sampling timepoints to be used. The data can be downloaded from BODC or from doi:10.1594/PANGAEA.778092 as files for each year by searching for "L4 zooplankton". The most comprehensive dataset is the version downloadable directly from this page. The entire set of zooplankton samples is stored at the Plymouth Marine Laboratory in buffered formalin, and may be available for further taxonomic analysis on request

    Car tire crumb rubber: Does leaching produce a toxic chemical cocktail in coastal marine systems?

    Get PDF
    Crumb rubber granulate (CRG) produced from end of life tires (ELTs) is commonly applied to synthetic turf pitches (STPs), playgrounds, safety surfaces and walkways. In addition to fillers, stabilizers, cross-linking agents and secondary components (e.g., pigments, oils, resins), ELTs contain a range of other organic compound and heavy metal additives. While previous environmental impact studies on CRG have focused on terrestrial soil and freshwater ecosystems, many sites applying CRG in Norway are coastal. The current study investigated the organic chemical and metal additive content of ‘pristine’ and ‘weathered’ CRG and their seawater leachates, as well as uptake and effects of leachate exposure using marine copepods (Acartia and Calanus sp.). A combination of pyrolysis gas chromatography mass spectrometry (py-GC-MS) and chemical extraction followed by GC-MS analysis revealed similar organic chemical profiles for pristine and weathered CRG, including additives such as benzothiazole, N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine and a range of polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds (e.g., bisphenols). ICP-MS analysis revealed g kg–1 quantities of Zn and mg kg–1 quantities of Fe, Mn, Cu, Co, Cr, Pb, and Ni in the CRG. A cocktail of organic additives and metals readily leached from the CRG into seawater, with the most abundant leachate components being benzothiazole and Zn, Fe, Co (metals), as well as detectable levels of PAHs and phenolic compounds. Concentrations of individual components varied with CRG source material and CRG to seawater ratio, but benzothiazole and Zn were typically the organic and metal components present at the highest concentrations in the leachates. While organic chemical concentrations in the leachates stabilized within days, metals continued to leach out over the 30-day period. Marine copepods exposed to high CRG leachate concentrations exhibited high mortalities within 48 h. The smaller lipid-poor Acartia had a higher sensitivity to leachates than the larger lipid-rich Calanus, indicating species-specific differences in vulnerability to leachates. The effect on survival was alleviated at lower leachate concentrations, indicating a dose-response relationship. Benzothiazole and its derivatives appear to be of concern owing to their proven toxicity, while bisphenols are also known to be toxic and were enriched in the leachates relative to the other compounds in the CRG

    Car tire crumb rubber: Does leaching produce a toxic chemical cocktail in coastal marine systems?

    No full text
    Crumb rubber granulate (CRG) produced from end of life tires (ELTs) is commonly applied to synthetic turf pitches (STPs), playgrounds, safety surfaces and walkways. In addition to fillers, stabilizers, cross-linking agents and secondary components (e.g., pigments, oils, resins), ELTs contain a range of other organic compound and heavy metal additives. While previous environmental impact studies on CRG have focused on terrestrial soil and freshwater ecosystems, many sites applying CRG in Norway are coastal. The current study investigated the organic chemical and metal additive content of ‘pristine’ and ‘weathered’ CRG and their seawater leachates, as well as uptake and effects of leachate exposure using marine copepods (Acartia and Calanus sp.). A combination of pyrolysis gas chromatography mass spectrometry (py-GC-MS) and chemical extraction followed by GC-MS analysis revealed similar organic chemical profiles for pristine and weathered CRG, including additives such as benzothiazole, N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine and a range of polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds (e.g., bisphenols). ICP-MS analysis revealed g kg–1 quantities of Zn and mg kg–1 quantities of Fe, Mn, Cu, Co, Cr, Pb, and Ni in the CRG. A cocktail of organic additives and metals readily leached from the CRG into seawater, with the most abundant leachate components being benzothiazole and Zn, Fe, Co (metals), as well as detectable levels of PAHs and phenolic compounds. Concentrations of individual components varied with CRG source material and CRG to seawater ratio, but benzothiazole and Zn were typically the organic and metal components present at the highest concentrations in the leachates. While organic chemical concentrations in the leachates stabilized within days, metals continued to leach out over the 30-day period. Marine copepods exposed to high CRG leachate concentrations exhibited high mortalities within 48 h. The smaller lipid-poor Acartia had a higher sensitivity to leachates than the larger lipid-rich Calanus, indicating species-specific differences in vulnerability to leachates. The effect on survival was alleviated at lower leachate concentrations, indicating a dose-response relationship. Benzothiazole and its derivatives appear to be of concern owing to their proven toxicity, while bisphenols are also known to be toxic and were enriched in the leachates relative to the other compounds in the CRG
    corecore