30 research outputs found
En uavhengig sentralbank sin effekt på pengepolitikken
Denne avhandlingen utforsker betydningen av en uavhengig sentralbank og dens effekt på pengepolitikken. Vi har hentet data for 37 sentralbanker, målt gjennom CBIE (Central Bank Independence Extended), fra Davide Romelli i tidsperioden 1972-2017. For å analysere effekten av sentralbankens uavhengighet, hentet vi data for to sentrale faktorer innen pengepolitikk, inflasjon og rente, fra OECD og IMF. Gjennom en multippel regresjonsanalyse undersøkte vi hvordan sentralbankens uavhengighet påvirker pengepolitikken, med endring i rente som avhengig variabel. Analysen er basert på fire regresjonsmodeller som undersøker sammenhengen mellom variablene, hvor tre av modellene inkluderte dummyvariabler for å fange opp trender for land og år. For å gjennomføre analysen av det omfattende datasettet har vi benyttet det statistiske dataanalyseverktøyet, RStudio.
Problemstillingen vi skal forsøke å besvare er;
“Hvilken effekt har en uavhengig sentralbank på pengepolitikken?”
Resultatene av analysen viste ingen statistisk signifikante sammenhenger mellom sentralbankens grad av uavhengighet og endring i rente, eller for interaksjonseffekten sentralbankens grad av uavhengighet har på endring i inflasjon. Selv om analysen ikke tillater å påvise årsakssammenhenger, gir den likevel grunnlag for plausible konklusjoner. Basert på at resultatene samsvarer med tidligere forskning, konkluderer vi med at en uavhengig sentralbank er nødvendig og best egnet til å føre en korrekt pengepolitikk på grunn av dens evne til å opprettholde bestemte handlingsregler
Impact of Selected Meteorological Factors on COVID-19 Incidence in Southern Finland during 2020-2021
We modelled the impact of selected meteorological factors on the daily number of new cases of the coronavirus disease 2019 (COVID-19) at the Hospital District of Helsinki and Uusimaa in southern Finland from August 2020 until May 2021. We applied a DLNM (distributed lag non-linear model) with and without various environmental and non-environmental confounding factors. The relationship between the daily mean temperature or absolute humidity and COVID-19 morbidity shows a non-linear dependency, with increased incidence of COVID-19 at low temperatures between 0 to -10 degrees C or at low absolute humidity (AH) values below 6 g/m3. However, the outcomes need to be interpreted with caution, because the associations found may be valid only for the study period in 2020-2021. Longer study periods are needed to investigate whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a seasonal pattern similar such as influenza and other viral respiratory infections. The influence of other non-environmental factors such as various mitigation measures are important to consider in future studies. Knowledge about associations between meteorological factors and COVID-19 can be useful information for policy makers and the education and health sector to predict and prepare for epidemic waves in the coming winters.</p
Attitudes and Practices Among Internists Concerning Genetic Testing
Many questions remain concerning whether, when, and how physicians order genetic tests, and what factors are involved in their decisions. We surveyed 220 internists from two academic medical centers about their utilization of genetic testing. Rates of genetic utilizations varied widely by disease. Respondents were most likely to have ordered tests for Factor V Leiden (16.8 %), followed by Breast/Ovarian Cancer (15.0 %). In the past 6 months, 65 % had counseled patients on genetic issues, 44 % had ordered genetic tests, 38.5 % had referred patients to a genetic counselor or geneticist, and 27.5 % had received ads from commercial labs for genetic testing. Only 4.5 % had tried to hide or disguise genetic information, and <2 % have had patients report genetic discrimination. Only 53.4 % knew of a geneticist/genetic counselor to whom to refer patients. Most rated their knowledge as very/somewhat poor concerning genetics (73.7 %) and guidelines for genetic testing (87.1 %). Most felt needs for more training on when to order tests (79 %), and how to counsel patients (82 %), interpret results (77.3 %), and maintain privacy (80.6 %). Physicians were more likely to have ordered a genetic test if patients inquired about genetic testing (p < .001), and if physicians had a geneticist/genetic counselor to whom to refer patients (p < .002), had referred patients to a geneticist/genetic counselor in the past 6 months, had more comfort counseling patients about testing (p < .019), counseled patients about genetics, larger practices (p < .032), fewer African‐American patients (p < .027), and patients who had reported genetic discrimination (p < .044). In a multiple logistic regression, ordering a genetic test was associated with patients inquiring about testing, having referred patients to a geneticist/genetic counselor and knowing how to order tests. These data suggest that physicians recognize their knowledge deficits, and are interested in training. These findings have important implications for future medical practice, research, and education
Analysis of Male Pheromones That Accelerate Female Reproductive Organ Development
Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified
Proteomic Analysis of Chikungunya Virus Infected Microgial Cells
Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms
Optimization of receptor occupancy assays in mass cytometry: Standardization across channels with QSC beads
Receptor occupancy, the ratio between amount of drug bound and amount of total receptor on single cells, is a biomarker for treatment response to therapeutic monoclonal antibodies. Receptor occupancy is traditionally measured by flow cytometry. However, spectral overlap in flow cytometry limits the number of markers that can be measured simultaneously. This restricts receptor occupancy assays to the analysis of major cell types, although rare cell populations are of potential therapeutic relevance. We therefore developed a receptor occupancy assay suitable for mass cytometry. Measuring more markers than currently available in flow cytometry allows simultaneous receptor occupancy assessment and high‐parameter immune phenotyping in whole blood, which should yield new insights into disease activity and therapeutic effects. However, varying sensitivity across the mass cytometer detection range may lead to misinterpretation of the receptor occupancy when drug and receptor are detected in different channels. In this report, we describe a method for optimization of mass cytometry receptor occupancy measurements by using antibody‐binding quantum simply cellular (QSC) beads for standardization across channels with different sensitivities. We evaluated the method in a mass cytometry‐based receptor occupancy assay for natalizumab, a therapeutic antibody used in multiple sclerosis treatment that binds to α4‐integrin, which is expressed on leukocyte cell surfaces. Peripheral blood leukocytes from a treated patient were stained with a panel containing metal‐conjugated antibodies for detection of natalizumab and α4‐integrin. QSC beads with known antibody binding capacity were stained with the same metal‐conjugated antibodies and were used to standardize the signal intensity in the leukocyte sample before calculating receptor occupancy. We found that QSC bead standardization across channels corrected for sensitivity differences for detection of drug and receptor and generated more accurate results than observed without standardization
Optimization of receptor occupancy assays in mass cytometry: Standardization across channels with QSC beads
Receptor occupancy, the ratio between amount of drug bound and amount of total receptor on single cells, is a biomarker for treatment response to therapeutic monoclonal antibodies. Receptor occupancy is traditionally measured by flow cytometry. However, spectral overlap in flow cytometry limits the number of markers that can be measured simultaneously. This restricts receptor occupancy assays to the analysis of major cell types, although rare cell populations are of potential therapeutic relevance. We therefore developed a receptor occupancy assay suitable for mass cytometry. Measuring more markers than currently available in flow cytometry allows simultaneous receptor occupancy assessment and high‐parameter immune phenotyping in whole blood, which should yield new insights into disease activity and therapeutic effects. However, varying sensitivity across the mass cytometer detection range may lead to misinterpretation of the receptor occupancy when drug and receptor are detected in different channels. In this report, we describe a method for optimization of mass cytometry receptor occupancy measurements by using antibody‐binding quantum simply cellular (QSC) beads for standardization across channels with different sensitivities. We evaluated the method in a mass cytometry‐based receptor occupancy assay for natalizumab, a therapeutic antibody used in multiple sclerosis treatment that binds to α4‐integrin, which is expressed on leukocyte cell surfaces. Peripheral blood leukocytes from a treated patient were stained with a panel containing metal‐conjugated antibodies for detection of natalizumab and α4‐integrin. QSC beads with known antibody binding capacity were stained with the same metal‐conjugated antibodies and were used to standardize the signal intensity in the leukocyte sample before calculating receptor occupancy. We found that QSC bead standardization across channels corrected for sensitivity differences for detection of drug and receptor and generated more accurate results than observed without standardization