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Abstract: We modelled the impact of selected meteorological factors on the daily number of new
cases of the coronavirus disease 2019 (COVID-19) at the Hospital District of Helsinki and Uusimaa in
southern Finland from August 2020 until May 2021. We applied a DLNM (distributed lag non-linear
model) with and without various environmental and non-environmental confounding factors. The
relationship between the daily mean temperature or absolute humidity and COVID-19 morbidity
shows a non-linear dependency, with increased incidence of COVID-19 at low temperatures between
0 to −10 ◦C or at low absolute humidity (AH) values below 6 g/m3. However, the outcomes need to
be interpreted with caution, because the associations found may be valid only for the study period
in 2020–2021. Longer study periods are needed to investigate whether severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has a seasonal pattern similar such as influenza and other
viral respiratory infections. The influence of other non-environmental factors such as various mitiga-
tion measures are important to consider in future studies. Knowledge about associations between
meteorological factors and COVID-19 can be useful information for policy makers and the education
and health sector to predict and prepare for epidemic waves in the coming winters.

Keywords: COVID-19 incidence; absolute humidity; temperature; meteorological factors; distributed
lag non-linear model; SARS-CoV-2

1. Introduction

In temperate climate regions viral respiratory infections are known to have higher
incidence during the winter, and earlier studies have shown that ambient temperature and
humidity play a role in the seasonal nature of respiratory viral infection outbreaks [1–3].
Data from England and Wales show that coronaviruses predating SARS-CoV-2 had a similar
seasonal distribution as influenza A and bocavirus during 2012–2019 [4].

The association between meteorological factors and COVID-19, a disease caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been inconsistent in
early epidemiological studies [5]. A recent review found that despite statistical association
between meteorological variables and the incidence of other respiratory infections, there
was lack of consensus between the 43 included studies on how meteorology modifies the
transmission of SARS-CoV-2 [6]. During the early stages of local COVID-19 epidemics, the
extent of SARS-CoV-2 transmission depended on government interventions and population
behavior rather than meteorological conditions [7].

A number of published studies report associations between meteorological factors
and COVID-19. For example, in the United States [8], cold and dry weather as well as low
levels of ultraviolet radiation were associated with increased SARS-CoV-2 transmissibility,
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with humidity playing the largest role. A study of 188 countries showed that in the
northern hemisphere, lower than average mean temperature and relative humidity values
were associated with a higher relative risk of COVID-19. Higher than average levels
of temperature and humidity in turn showed lower risk [9]. Based on short-term data
from England, an increased risk of COVID-19 incidence was found at daily ambient mean
temperatures of around 11–13 ◦C which correspond to typical conditions during the coldest
months of the year in England [10]. In China, a study showed that the incidence of COVID-
19 decreased with increasing temperature [11].

Findings about the role of humidity vary as well, possibly depending on the type of
humidity variable used. For instance, Ai et al. [12] found that the way relative humidity
had affected COVID-19 prevalence depended on the range of humidity variation in the
selected countries. In studies regarding the association between absolute humidity and
COVID-19 incidence, Runkle et al. [13] found a positive association with humidity values
around 6–9 g/kg in the United States, and Nottmeyer and Sera [10] found the humidity
value of 6–8 g/m3 to be associated with the highest risk of infection in England. Higher
pollen concentrations in the air are also found to correlate with increased infection rates,
including in those not allergic to pollens [14]. In Finland, the dependence of the daily
incidence of COVID-19 on meteorological factors (temperature, relative humidity, and
air pollutants) in different hospital districts was studied in the beginning of the epidemic
(1 January through 31 May 2020) but no firm associations were found [15].

Causal pathways between weather or climate and viral epidemics are not fully un-
derstood. The World Meteorological Organization (WMO) [5] divided the mechanisms of
how meteorological factors can influence transmission into virus viability, host immunity
and human behavior. Nichols et al. [4] divided the drivers of seasonal infection dynamics
into immunological, weather-related, social, and travel-related factors. Studies on virus
survival rates have shown that prolonged virus viability and transmissibility are associ-
ated with cooler and drier low-humidity environments as these conditions favor rapid
evaporation of water from exhaled aerosols [2,5,16]. Studies on environmental conditions
and antiviral defense in human airway epithelium implies a relationship between the host
defense systems and changes in temperature and the water content of the air, but high
temperature can also impair antibody production [17]. Cold weather increases respiratory
symptoms and functional disability especially among patients with asthma and allergic
rhinitis as the inhalation of cold air may contribute to increased susceptibility to respiratory
infections [17,18]. Weather impacts human behavior also directly as people tend to spend
more time indoors during cold, hot or rainy weather, which provides more favorable
conditions for virus transmission [5,19].

In Finland, the first case of COVID-19 was detected in Lapland on 21 January 2020, but
the actual number of cases started to increase only in late February [20,21]. By mid-March
the disease was considered an epidemic and on 16 March 2020, the government announced
a state of emergency and imposed physical distancing measures to slow down the spread
of the virus [20]. After the first epidemic peak in March–April 2020, two further peaks were
noted by 31 May 2021. The second peak occurred in November–December 2020 and the
third one occurred in March 2021. Vaccinations against COVID-19 started in 2021 and have
mitigated COVID-19 outbreaks and reduced incidence, hospitalizations, and deaths in the
population [22].

In this study, we aim to provide further understanding about the impact of meteoro-
logical factors on the COVID-19 epidemic in Finland, a country with a northern European
climate. Specifically, we aim to model the weather-dependence of COVID-19 for the
time-period from August 2020 through May 2021 at the Hospital District of Helsinki and
Uusimaa, the extended capital region of the country and assess the role of absolute humidity
and temperature in explaining the intensity of the epidemic waves.
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2. Materials and Methods
2.1. Data

The daily numbers of laboratory confirmed COVID-19 cases in Finland were collected
from the Finnish Institute for Health and Welfare repository (THL, 2021) for two different
time periods: from 27 February 2020 to 31 May 2021, and 1 August 2020 to 31 May 2021.
The morbidity dataset does not include information on gender or age. We focused on the
Hospital District of Helsinki and Uusimaa (HUS) (Figure 1), as this hospital district is the
most populated and exhibited the largest numbers of COVID-19 cases in Finland. The
HUS area includes Helsinki and the wider metropolitan area of Finland as well as several
other municipalities.
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Figure 1. The map shows the 21 different hospital districts in Finland. The study area, the Hospital
District of Helsinki and Uusimaa (HUS), is shown in blue.

We analyzed the two time periods separately. The main analysis is based on the second
period (August 2020–May 2021), because this time series is more homogeneous than the
time series including spring 2020: the testing capacity to confirm COVID-19 cases was not
sufficient in spring 2020 when the pandemic started rapidly. Furthermore, the first wave
peak weakened quickly, quite likely due to the mitigation measures by the government,
and the cases started to rise again in autumn 2020 [21]. On the other hand, after the main
study period, in summer 2021 the new delta virus variant took over and the share of
the vaccinated population increased substantially [23]. Table 1 shows an overview of the
COVID-19 data and meteorological factors during the study period.
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Table 1. An overview of COVID-19 cases and meteorological data during the two study periods. The
total number of laboratory confirmed COVID-19 cases, range of the daily average absolute humidity,
the range of the daily average temperature values and minimum and maximum temperatures for
the two time periods are shown. Temperature and absolute humidity values were measured at the
Kumpula weather station.

Time Period
Confirmed
COVID-19

Cases

Average Daily
Absolute

Humidity (g/m3)

Average Daily
Temperature, Max, Min

Values (◦C)

27 February 2020–31 May 2021 54,203 1.01–14.01
−18.8–+24.00
min = −21.8
max = +29.4

1 August 2020–31 May 2021 48,013 1.01–13.9
−18.8–+21.7
min = −21.8
max = +27.1

The meteorological data consisted of daily average values of temperature (T), absolute
humidity (AH), air pollution, and ultraviolet radiation (UVR). Absolute humidity (g/m3)
values were calculated with a formula based on the WMO recommendations (WMO
No-8) [24]. For air pollution we used particulate matter PM10 measured at the urban
background station in Kallio, maintained by the Helsinki Region Environmental Services
Authority. The level of UVR was derived by calculating erythemally weighted UV daily
doses [25] from spectral UV irradiance measured by a Brewer spectroradiometer located
in Kumpula, Helsinki (60.20 N, 24.96 E) [26,27]. Satellite retrievals were used to fill data
gaps, which may have occurred due to either malfunction of an instrument or calibrations,
and surface UV radiation products from TROPOMI [28,29] and OMI [30,31] instruments
were used for measurements. OMI UVR data were downloaded from NASA Aura data
validation center [32].

We characterized the government restriction actions using the Oxford Coronavirus
Government Response Tracker (OxCGRT). Data for Finland were derived directly from the
site OurWorldData (https://ourworldindata.org/COVID-stringency-index, (accessed on
15 June 2022). The index combines the following nine metrics: school closures; workplace
closures; cancellation of public events; restrictions on public gatherings; closures of public
transport; stay-at-home requirements; public information campaigns; restrictions on inter-
nal movements; and international travel controls [9,33]. The index uses a scale from 0 to
100 to estimate how strict the policy responses were. The stringency index (STRI) data for
Finland during the study period is presented in Figure S4 in the Supplementary Material.

2.2. Statistical Methods

We studied short-term associations between temperature and absolute humidity with
the daily number of new COVID-19 cases, using a distributed lag non-linear model (DLNM).
DLNM provides a framework to describe exposure–response dependencies involving non-
linear and delayed effects of environmental stressors [34,35]. The method is a regression
analysis using a generalized linear model with a quasi-Poisson family of distributions. The
general model formula is:

g(µt) = α + s(xt; η) +
J

∑
i=1

hj(cti, γk) (1)

where g() is a monotonic link function, µt = E(Yt), where E(Yt) is the expected value of the
number of COVID-19 cases at day t. α is the intercept and s(xt;η) is the exposure–response
function or cross-basis matrix of the selected meteorological predictor xt (temperature or
absolute humidity). The confounding variables are presented with cti defined with function
hj with parameter vector γk. We used a cross-basis function to create a two-dimensional
matrix of AH (daily mean absolute humidity) or T (daily mean temperature), with natural
cubic splines to account for the time lagged effect of the meteorological predictor in question.

https://ourworldindata.org/COVID-stringency-index
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The Akaike Information Criteria (AIC) were used to select the number of knots for absolute
humidity (or temperature) and the time lags. In addition to knots selection by AIC, we
fitted an additional model with three predefined knots for the exposure variables and one
knot for lags. The knots were equally spaced within the range of the predictor while the
positions of the lag knots were based on equally spaced log values.

The relative risk was studied with two different models: a simple model (Model 1)
with the predictors T or AH and day-of-the-week effect (dow) as a confounding factor, and
a complex model (Model 2) with several other confounding factors (see Model 2). As T
and AH are highly correlated, they could not be used in the same model. The results are
reported as incidence rate ratios (relative risks, RR) that summarize the associations of
interest [36,37].

Model 1: a simple model

g(µt) = α + s(xt; η) + dow (2)

Model 2: a complex model with several confounding factors

g(µt) = α + s(xt; η) + dow + ns(yday, d f ) + PM10 + UV + STRI (3)

dow is a dummy variable for the day of the week on day t,
yday is the natural cubic spline function for the day of the year with degrees of freedom

(df = 3),
PM10 is respirable particles of diameter 10 micrometres or smaller (µg/m3),
UV is the erythemally weighted UV daily dose,
STRI Government Response Stringency Index for Finland.
We estimated several alternative models using different lag durations (7, 14 and

21 days). In previous COVID-19 studies, a lag of 14 days has often been used as the
maximum lag, but there are inconsistent results on which lag duration is associated with
COVID-19 [36]. The incubation period for COVID-19 is on average 5 days but to investigate
delayed effects such as secondary infections also longer lag of 14 or 21 days were studied.
For T and AH, we used 5 ◦C and 7 g/m3 as reference point values as these values were
close to the predictor mean in the observed meteorological time series. Dow is a factor
to control the effect of weekdays. Seasonal trends were added into Model 2 with a time
controlling term, day of the year (yday) with 3 df. All incidence risk ratios or RR were
estimated with 95% confidence intervals (CI).

We present results with 14-day and 21-day lags and, as a sensitivity analysis, also
provide results with 7-day lag in the Supplementary Materials. All analyses were performed
separately for the two time periods. The main analysis covers the period from August
2020 to May 2021. Results covering the entire period from February 2020 to May 2021 are
provided in the Supplementary Materials.

The statistical analyses were performed with R 4.1.2 package “dlnm” [36].

3. Results
3.1. Epidemic Waves in the HUS Area

Figure 2 shows the time series of daily COVID-19 cases with the daily values of
absolute humidity and mean temperature during the study period. The highest number of
new daily COVID-19 cases occurred during the third wave, which started in February 2021
and peaked in mid-March with a subsequent decline in April. The dominant virus variant
for the second and third epidemic peak in Finland was the alpha (B.1.1.17) variant, but also
other virus variants such as the beta (B.1.351) variant were present in the third peak [38,39].
Two weeks prior to and during the third wave the daily AH averages were between 1 and
5.8 g/m3 and the daily average T between −14.7 and +4.8 ◦C. During the second wave
(November–December 2020), the daily numbers of cases were lower than during the third
wave. The AH varied during the second epidemic peak between 3.0 and 8.7 g/m3 and the
daily average T between −1.5 ◦C and +10.6 ◦C.
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Figure 2. Daily average absolute humidity values (upper figure) and daily mean temperature (lower
figure) with daily numbers of laboratory-confirmed COVID-19 cases (red color) in the Helsinki-
Uusimaa Hospital District (HUS). Three epidemic wave peaks took place during the study period
from 27 February 2020 to 31 May 2021.

3.2. Relative Risks of COVID-19 by Absolute Humidity and Temperature

Figure 3 shows the relative risk (RR) of COVID-19 estimated by Models 1 and 2 and
using AH or T as the exposure factor over a 14-day lag with two different knot alternatives.
We first subjectively fixed the knots to three for the exposure variables (absolute humidity
and temperature) and one for the lag. Alternatively, the number of knots was allowed to
vary according to the lowest AIC but was limited to a maximum of six knots for exposure
and one or two knots for lag.

Model 1 showed a higher RR with AH values below 6 g/m3 and at 9–10 g/m3 when
compared to the reference value of 7 g/m3. By contrast, high AH values (>11 g/m3) were
associated with a smaller RR for both knot options. In model 1 with T as the exposure
factor, the RR was highest at around −7 to −10 ◦C, compared to the reference value of
T = +5 ◦C. The risk decreased with temperatures higher than +10 ◦C.

In Model 2, which included several confounding factors, the overall RR values for AH
were similar to those in Model 1 as high AH values (>11 g/m3) were associated with lower
COVID-19 risk for both knot options. The highest RR was found with AH less than 6 g/m3

and between 8–10 g/m3. For temperature, the highest RR values in Model 2 were found
between −0 and −10 ◦C.
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Figure 3. Relative risks of COVID-19 by absolute humidity, daily mean temperature, and time lag,
compared to the reference values of 7 g/m3 and 5 ◦C. The figures present RR for Models 1 and 2 with
up to 14-day lag in the Helsinki-Uusimaa hospital district (HUS) from 1 August 2020 until 31 May
2021. Left panels: the number of knots for the exposure–response function was fixed at three knots.
Right panels: the number of knots were based on the lowest AIC with a maximum limit of six knots.
Increased RR is presented as red, decreased RR as blue, and white indicates no significant difference.

Several confounding factors, such as particulate matter, ultraviolet radiation and the
stringency index, modified the exposure–response relationships, but the pattern remained
fairly similar to the one in the simpler Model 1. The absolute humidity and lag associations
showed varied results. For instance, the highest RR values were found between lag 0 to
lag 10 in both models when the number of knots was based on AIC, and for the fixed
three knots option, the RR was elevated from all lags up to 14 days with low AH values.
For temperature, the RR and lag associations showed mixed results. In Model 1 with T
as the exposure, the RR was highest between lags 8 to 14 while for Model 2, the RR was
elevated for all lag days up to 14 days. We did not investigate the impact of each individual
confounding factor separately.
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3.3. Model 2 Analysis with Different Lags

The role of the delayed effects of meteorological factors on the COVID-19 incidence
was studied over 21-day and 14-day lag periods to investigate whether their differences
occur when varying the length of the total of lag days used. The two different lag time
lengths were applied for both absolute humidity and temperature in Model 2. The results
are presented in Figure 4.
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Figure 4. Relative risks of COVID-19 by absolute humidity, temperature, and lag, compared to the
reference values of 7 g/m3 and +5 ◦C. The figures present RR for Model 2 with lag up to 21 and
14 days in the Helsinki-Uusimaa hospital district (HUS) for the time period 1 August 2020 until
31 May 2021. The results were calculated for both a fixed number of three knots and using AIC with
a maximum of six knots. Increased relative risk is presented in red, decreased risk in blue, and white
indicates no significant difference.

Increased RR was found at low humidity values varying from approximately 1.1 to
6.0 g/m3, but also at higher humidity values between 8 to 10 g/m3, as compared to the
reference AH value of 7 g/m3 (Figure 4). At low absolute humidity values the RR was
elevated up to a 14-day lag. The RR for temperature showed the highest risk between 0 ◦C
and −10 ◦C, compared to the reference T value of +5 ◦C, and the risk was elevated with all
lags up to day 21 for both knot options.

The delayed impact of meteorological factors on COVID-19 is not clear. For low
absolute humidity values the risk lasted for 14 days but with other AH values the results
were mixed. Similarly, for low temperatures the risk remained elevated for up to 21 days.



Int. J. Environ. Res. Public Health 2022, 19, 13398 9 of 14

3.4. Overall Cumulative Exposure–Response

Figure 5 presents the overall cumulative associations (net risks) of COVID-19 across
all 14-day lags for AH and T for Model 2. In dry conditions the overall RR increases
substantially. For instance, at AH = 2 g/m3 the overall RR was 1.73 (95%-CI: 1.19; 2.51)
with the reference value AH = 7 g/m3. Similarly, the RR at T = −7 ◦C was 3.95 (95%-CI:
2.88; 5.423) with the reference value T = +5 ◦C.
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As a sensitivity analysis, we show additional modelled relationships (see
Supplementary Material), and show that the different model versions as well as longer
study period including spring 2020 produced similar generic patterns, i.e., increased
COVID-19 risks at low values of AH or T, and decreased risks at higher values of AH or T.

4. Discussion

We modelled the effect of ambient temperature and absolute humidity on the inci-
dence of COVID-19 cases at the Helsinki and Uusimaa Hospital District (HUS) area by
applying DLNM and using different modelling versions. In the simple model (Model 1),
only one meteorological factor at a time was used as the independent variable while the
complex model version (Model 2) included several environmental and non-environmental
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confounding factors. In addition, model versions with different lag lengths and different
numbers of knots were used to study how consistent the modelled relationships were.
Our results showed that the overall patterns of the exposure–response relationships were
similar across different models, although the details of the relationships differed. Our
study indicated that a higher incidence of COVID-19 was associated with low absolute
humidity and low ambient temperature which coincide with the third epidemic wave peak
in February–March 2021. It is likely that Model 2 explains the associations between meteo-
rological factors and COVID-19 better than Model 1 as it also includes non-environmental
confounding factors.

Studies on the role of meteorological factors on the spread of COVID-19 have showed
varied results in the published literature. Nevertheless, several studies suggest that it is
likely that weather contributes to the better survival of the virus in the winter months.
Our results from the 10-month study period from August 2020 to May 2021 agree with the
notion that viruses tend to survive longer in colder and drier conditions (e.g., [4,17,40]).
When comparing to the results of Nottmeyer et al. [41], we consider that it is also important
to perform national level modelling since global multi-country studies may not adequately
describe in detail the situation and climatic conditions in Finland. Trends in meteorological
factors such as temperature or humidity can increase or decrease the activity of a specific
virus at certain times of the year [4,42,43]. In this study we did not study in detail meteoro-
logical factors such as UVR, but studies suggest also that solar radiation is highly effective
in inactivating SARS-CoV-2 [44,45]. UVR, PM10 and the stringency index were used as
confounding factors in the regression model. However, non-meteorological factors such as
host resistance and human behavioral changes also contribute to the seasonality of virus
infections. It is worth noting that after the time period covered in this study, a new delta
(B.1.617) variant started spread in Finland and led to increased COVID-19 incidence during
the summer months in 2021, but the largest increase in the incidence occurred during the
winter 2022 when omicron (BA-variants) started to spread [23]. Thus, with new variants,
SARS-CoV-2 can spread effectively throughout the year and further studies are needed to
elaborate on the influence of meteorological factors.

Due to the relatively short study period, any conclusions need to be made with care.
The modelled exposure–response relationships might indicate true causal pathways but
could also be only due to coincidence. The highest incidence of COVID-19 occurred during
the third wave of the epidemic in March 2021 (Figure 1), when the weather conditions were
colder and drier than during the second wave in November–December 2020. Consequently,
the exposure–response relationship in Model 2 also showed an increased RR at higher
humidity values ranging from 8 to 10 g/m3, conditions that prevailed during the second
epidemic wave (Figure 3). The delayed impact of meteorological factors on COVID-19 is
not clear. For low absolute humidity values the risk varied between the knot options and
models demonstrated elevated risk up to 14 days. Similarly, for specific low temperatures,
the risk remained elevated for up to 21 days. Based on our results, it might be useful to
consider weather conditions acting as a protective factor as well. According to our study,
AH values of more than 10 g/m3 and daily mean temperature values higher than 10 ◦C
showed a decreased relative risk for COVID-19 daily incidence.

Starting from March 2020 pandemic mitigation measures were present at the Helsinki
and Uusimaa Hospital District; social distancing and working remotely were mandatory or
highly recommended, meaning that the study period does not represent the pre-pandemic
normal conditions when people work, travel and can meet each other flexibly. Results based
on the state of emergency conditions set up during the coronavirus pandemic are very
different to conditions in earlier studies on the seasonality of respiratory viral infections
and thus the influence of weather factors is probably not yet clearly seen or may give
misleading results. Furthermore, the coronavirus infection rates in Finland were most
likely slowed down during social distancing orders, which were present during the study
period [21]. To study seasonality, we would need several years of data while keeping in
mind that other non-environmental conditions have also changed from 2020–2021. We used
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the time series from August 2020 until May 2021 as this study period presents a sufficiently
homogeneous time series when considering non-environmental background factors such as
vaccines and mitigation measures. During the study period from August 2020 to May 2021
most of the population was not vaccinated, and also the policies and recommendations
changed substantially after May 2021 [23]. However, we consider that it is important to
conduct later further studies with longer time series in order to better understand the role
of different variants and mitigation measures on the weather dependence of COVID-19.

In addition to the short time period and the presence of social distancing, there are
several challenges that make COVID-19 modelling with meteorological factors difficult. The
DLNM methodology applied in this study is a good approach to research short-term effects
with different lags. However, the ways in which the analysis and selection of modelling
variables such as the reference points or knots were performed means that the comparison
difficult and even analyses based on data from the same country can provide very different
results [6]. Furthermore, significant differences could not be seen in our results from the
two knot selection alternatives. The models with a fixed number of three knots may yield a
simplified association but can also lead to model underfitting. On the other hand, model
overfitting may be a consequence in a model version where knot selection is based on AIC,
especially if the maximum number of knots is not limited.

To overcome some of the above challenges in future studies, investigating multiple
regions would be useful, but preliminary tests for other hospital districts in Finland have
proved to be challenging due to the low number of daily cases of COVID-19. Furthermore,
based on other existing research, the use of the effective reproduction number instead of
the daily number of new COVID-19 cases could be studied [6]. Modelling the seasonality of
other common viral respiratory infections in Finland with the DLNM modelling framework
would also be useful to understand the influence of meteorological factors. In this study, the
stringency index was selected to describe the extent of governmental mitigation measures,
but an evaluation of how well this index fits Finland has not been performed. The index
data has been available since 1 January 2020 and it has been used as an epidemiological
index in several COVID-19 studies [10,12,41,46,47]. The index shows how the mitigation
measures changed during the study period.

One possibility for further studies could be to review other investigations conducted
for the same period in the Uusimaa region. For instance, weather conditions explain
heating and cooling demands, which impact indoor humidity which again depend on the
ventilation systems in use. Data from indoor and outdoor investigations, such as from the
study started with the Finnish Football Association by Gregow et al. [48], could additionally
be used as study material. A lot more research is needed on chains of impact, but in the
future the outcomes could be used in the development of multi-hazard early warning
systems (MHEWS) for infectious diseases. These systems are explained, for instance, by
Rogers et al. [49].

Despite the uncertainties, for the upcoming cold seasons it might be worthwhile to
apply the associations of COVID-19 incidence with low temperature and absolute humidity
from our study period in 2020–2021 as information for the HUS area. The outcomes could
be used in epidemic models, biometeorological forecasts, multi-hazard early warning
systems or as information to health authorities, education sector and healthcare providers.

5. Conclusions

Our study from the HUS area in southern Finland in 2020–2021 found a non-linear
association between the selected meteorological variables and COVID-19, linked with the
second and third epidemic waves. The highest relative risk was found to correlate with
low temperature and humidity values, while high temperature and humidity values were
associated with lower RR. However, the results need to be interpreted with caution because
of the short study period and the efficient government policies and recommendations that
took place during the early years of COVID-19.
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Seasonality will likely affect the incidence of COVID-19 in Finland in the future, but
longer study periods with relevant non-environmental influences are needed to confirm
the associations between COVID-19 and meteorological factors. The associations between
meteorological factors and COVID-19 can be useful information for healthcare professionals
to predict and prepare for epidemic waves in the coming years.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijerph192013398/s1, Figure S1. Relative risks (RR) of COVID-19
by daily average absolute humidity and lag, compared to the reference value at 7 g/m3. The figures
present RR for Model 1 and Model 2 with 21-,14- and 7 days lag at the Helsinki-Uusimaa hospital
district (HUS) from 1 August 2020 until 31 May 2021 or from 27 February 2020 until 31 May 2021. The
number of knots at the exposure–response function were based on the lowest AIC with a maximum
limit of six knots. Figure S2. Relative risks (RR) of COVID-19 by daily mean temperature and lag,
compared to the reference value at 5 ◦C. The figures present RR for Model 1 and Model 2 with 21-,14-
and 7 days lag at the Helsinki-Uusimaa hospital district (HUS) from 1 August 2020 until 31 May 2021
or from 27 February 2020 until 31 May 2021. The number of knots at the exposure–response function
were based on the lowest AIC with a maximum limit of six knots. Figure S3. Relative risks (RR) of
COVID-19 by daily absolute humidity, mean temperature, and lag, compared to the reference values
at 7 g/m3 and at +5 ◦C. The figures present RR for Model 1 and Model 2 with 21- and 14 days lag at
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February 2020 until 31 May 2021. The stringency index is a composite measure that is based on nine
response indicators including travel bans, school closures and workplace closures, rescaled to a value
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