683 research outputs found

    Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot

    Full text link
    We report measurements of the Kondo effect in a double quantum dot (DQD), where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the DQD system.Comment: Text and supplementary information. Text: 4 pages, 5 figures. Supplementary information: 4 pages, 4 figure

    Temperature dependence of Fano line shapes in a weakly coupled single-electron transistor

    Full text link
    We report the temperature dependence of the zero-bias conductance of a single-electron transistor in the regime of weak coupling between the quantum dot and the leads. The Fano line shape, convoluted with thermal broadening, provides a good fit to the observed asymmetric Coulomb charging peaks. However, the width of the peaks increases more rapidly than expected from the thermal broadening of the Fermi distribution in a temperature range for which Fano interference is unaffected. The intrinsic width of the resonance extracted from the fits increases approximately quadratically with temperature. Above about 600 mK the asymmetry of the peaks decreases, suggesting that phase coherence necessary for Fano interference is reduced with increasing temperature.Comment: 6 pages, 4 figures. New references have been added to support the analysi

    Singlet-triplet transition in a single-electron transistor at zero magnetic field

    Full text link
    We report sharp peaks in the differential conductance of a single-electron transistor (SET) at low temperature, for gate voltages at which charge fluctuations are suppressed. For odd numbers of electrons we observe the expected Kondo peak at zero bias. For even numbers of electrons we generally observe Kondo-like features corresponding to excited states. For the latter, the excitation energy often decreases with gate voltage until a new zero-bias Kondo peak results. We ascribe this behavior to a singlet-triplet transition in zero magnetic field driven by the change of shape of the potential that confines the electrons in the SET.Comment: 4 p., 4 fig., 5 new ref. Rewrote 1st paragr. on p. 4. Revised author list. More detailed fit results on page 3. A plotting error in the horizontal axis of Fig. 1b and 3 was corrected, and so were the numbers in the text read from those fig. Fig. 4 was modified with a better temperature calibration (changes are a few percent). The inset of this fig. was removed as it is unnecessary here. Added remarks in the conclusion. Typos are correcte

    Transmission Phase of a Quantum Dot with Kondo Correlation Near the Unitary Limit

    Full text link
    The complex transmission amplitude -- both magnitude and phase -- of a quantum dot (QD) with Kondo correlation was measured near the unitary limit. Contrary to previous phase measurements, performed far from this limit [Ji et al., Science 290, 779 (2000)], the transmission phase was observed to evolve linearly over a range of about 1.5 pi when the Fermi energy was scanned through a Kondo pair -- a pair of spin degenerate energy levels. Moreover, the phase in Coulomb blockade (CB) peak, adjancent to the Kondo pair, retained a memory of the Kondo correlation and did not exhibit the familiar behavior in the CB regime. These results do not agree with theoretical predictions, suggesting that a full explanation may go beyond the framework of the Anderson model.Comment: 4 pages, 4 figure

    Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire

    Get PDF
    Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of considerable technological importance but remains a challenge due to the amphoteric behavior of the dopant atoms. Here we show that placing a narrow GaAs quantum well in the AlAs shell effectively getters residual carbon acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined emission. Theoretical calculations of NW electronic structure confirm quantum confinement of carriers at the core/shell interface due to the presence of ionized carbon acceptors in the 1~nm GaAs layer in the shell. Micro-photoluminescence in high magnetic field shows a clear signature of avoided crossings of the n=0n=0 Landau level emission line with the n=2n=2 Landau level TO phonon replica. The coupling is caused by the resonant hole-phonon interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters (http://pubs.acs.org/doi/full/10.1021/nl500818k

    Fano Resonances in Electronic Transport through a Single Electron Transistor

    Full text link
    We have observed asymmetric Fano resonances in the conductance of a single electron transistor resulting from interference between a resonant and a nonresonant path through the system. The resonant component shows all the features typical of quantum dots, but the origin of the non-resonant path is unclear. A unique feature of this experimental system, compared to others that show Fano line shapes, is that changing the voltages on various gates allows one to alter the interference between the two paths.Comment: 8 pages, 6 figures. Submitted to PR
    corecore