352 research outputs found

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    An overview of the current status of CMB observations

    Full text link
    In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmological parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.Comment: Latest CMB results have been included. References added. To appear in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 200

    Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw

    Full text link
    We study the possibility of a light Dark Matter (DM) within a constrained Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM singlet-pair sector to account for the non-zero neutrino masses by inverse seesaw mechanism. Working within a 'hybrid' scenario with the MSSM sector fixed at high scale and the singlet neutrino sector at low scale, we find that, contrary to the case of the usual cMSSM where the neutralino DM cannot be very light, we can have a light sneutrino DM with mass below 100 GeV satisfying all the current experimental constraints from cosmology, collider as well as low-energy experiments. We also note that the supersymmetric inverse seesaw mechanism with sneutrino as the lightest supersymmetric partner can have enhanced same-sign dilepton final states with large missing transverse energy (mET) coming from the gluino- and squark-pair as well as the squark-gluino associated productions and their cascade decay through charginos. We present a collider study for the same-sign dilepton+jets+mET signal in this scenario and propose some distinctions with the usual cMSSM. We also comment on the implications of such a light DM scenario on the invisible decay width of an 125 GeV Higgs boson.Comment: 24 pages, 4 figures, 7 tables; matches published versio

    Where do students in the health professions want to work?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rural and remote areas of Australia are facing serious health workforce shortages. While a number of schemes have been developed to improve recruitment to and retention of the rural health workforce, they will be effective only if appropriately targeted. This study examines the factors that most encourage students attending rural clinical placements to work in rural Australia, and the regions they prefer.</p> <p>Methods</p> <p>The Careers in Rural Health Tracking Survey was used to examine the factors that most influence medical, nursing and allied health students' preference for practice locations and the locations preferred.</p> <p>Results</p> <p>Students showed a preference for working in large urban centres within one year, but would consider moving to a more rural location later in life. Only 10% of students surveyed said they would never work in a rural community with a population of less than 10 000. Almost half the sample (45%) reported wanting to work overseas within five years. The type of work available in rural areas was found to be the factor most likely to encourage students to practice rurally, followed by career opportunities and challenge</p> <p>Conclusion</p> <p>The decision to practise rurally is the result of a complex interaction between a number of factors including ethnicity, discipline, age and sex, among others. Incentives that aim to entice all students to rural practice while considering only one of these variables are likely to be inadequate.</p

    Sperm from Hyh Mice Carrying a Point Mutation in αSNAP Have a Defect in Acrosome Reaction

    Get PDF
    Hydrocephalus with hop gait (hyh) is a recessive inheritable disease that arose spontaneously in a mouse strain. A missense mutation in the Napa gene that results in the substitution of a methionine for isoleucine at position 105 (M105I) of αSNAP has been detected in these animals. αSNAP is a ubiquitous protein that plays a key role in membrane fusion and exocytosis. In this study, we found that male hyh mice with a mild phenotype produced morphologically normal and motile sperm, but had a strongly reduced fertility. When stimulated with progesterone or A23187 (a calcium ionophore), sperm from these animals had a defective acrosome reaction. It has been reported that the M105I mutation affects the expression but not the function of the protein. Consistent with an hypomorphic phenotype, the testes and epididymides of hyh mice had low amounts of the mutated protein. In contrast, sperm had αSNAP levels indistinguishable from those found in wild type cells, suggesting that the mutated protein is not fully functional for acrosomal exocytosis. Corroborating this possibility, addition of recombinant wild type αSNAP rescued exocytosis in streptolysin O-permeabilized sperm, while the mutant protein was ineffective. Moreover, addition of recombinant αSNAP. M105I inhibited acrosomal exocytosis in permeabilized human and wild type mouse sperm. We conclude that the M105I mutation affects the expression and also the function of αSNAP, and that a fully functional αSNAP is necessary for acrosomal exocytosis, a key event in fertilization

    Association of food security status with overweight and dietary intake: exploration of White British and Pakistani-origin families in the Born in Bradford cohort.

    Get PDF
    BACKGROUND: Food insecurity has been associated with dietary intake and weight status in UK adults and children although results have been mixed and ethnicity has not been explored. We aimed to compare prevalence and trajectories of weight and dietary intakes among food secure and insecure White British and Pakistani-origin families. METHODS: At 12 months postpartum, mothers in the Born in Bradford cohort completed a questionnaire on food security status and a food frequency questionnaire (FFQ) assessing their child's intake in the previous month; at 18 months postpartum, mothers completed a short-form FFQ assessing dietary intake in the previous 12 months. Weights and heights of mothers and infants were assessed at 12-, 24-, and 36-months postpartum, with an additional measurement of children taken at 4-5 years. Associations between food security status and dietary intakes were assessed using Wilcoxon-Mann-Whitney for continuous variables and χ2 or Fisher's exact tests for categorical variables. Quantile and logistic regression were used to determine dietary intakes adjusting for mother's age. Linear mixed effects models were used to assess longitudinal changes in body mass index (BMI) in mothers and BMI z-scores in children. RESULTS: At 12 months postpartum, White British mothers reported more food insecurity than Pakistani-origin mothers (11% vs 7%; p < 0.01) and more food insecure mothers were overweight. Between 12 and 36 months postpartum, BMI increased more among food insecure Pakistani-origin mothers (β = 0.77 units, [95% Confidence Interval [CI]: 0.40, 1.10]) than food secure (β = 0.44 units, 95% CI: 0.33, 0.55). This was also found in Pakistani-origin children (BMI z-score: food insecure β = 0.40 units, 95% CI: 0.22, 0.59; food secure β = 0.25 units, 95% CI: 0.20, 0.29). No significant increases in BMI were observed for food secure or insecure White British mothers while BMI z-score increased by 0.17 (95% CI: 0.13, 0.21) for food secure White British children. Food insecure mothers and children had dietary intakes of poorer quality, with fewer vegetables and higher consumption of sugar-sweetened drinks. CONCLUSIONS: Food security status is associated with body weight and dietary intakes differentially by ethnicity. These are important considerations for developing targeted interventions

    Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury

    Get PDF
    Our objective was to identify microRNA (miRNA) biomarkers of drug-induced liver and kidney injury by profiling the circulating miRNome in patients with acetaminophen overdose. Plasma miRNAs were quantified in age- and sex-matched overdose patients with (N=27) and without (N=27) organ injury (APAP-TOX and APAP-no TOX, respectively). Classifier miRNAs were tested in a separate cohort (N=81). miRNA specificity was determined in non-acetaminophen liver injury and murine models. Sensitivity was tested by stratification of patients at hospital presentation (N=67). From 1809 miRNAs, 75 were 3-fold or more increased and 46 were 3-fold or more decreased with APAP-TOX. A 16 miRNA classifier model accurately diagnosed APAP-TOX in the test cohort. In humans, the miRNAs with the largest increase (miR-122-5p, miR-885-5p, miR-151a-3p) and the highest rank in the classifier model (miR-382-5p) accurately reported non-acetaminophen liver injury and were unaffected by kidney injury. miR-122-5p was more sensitive than ALT for reporting liver injury at hospital presentation, especially combined with miR-483-3p. A miRNA panel was associated with human kidney dysfunction. In mice, miR-122-5p, miR-151a-3p and miR-382-5p specifically reported APAP toxicity - being unaffected by drug-induced kidney injury. Profiling of acetaminophen toxicity identified multiple miRNAs that report acute liver injury and potential biomarkers of drug-induced kidney injury

    Pleiotropic genes for metabolic syndrome and inflammation

    Get PDF
    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation. (C) 2014 Elsevier Inc. All rights reserved
    corecore