166 research outputs found
Uniaxial and biaxial soft deformations of nematic elastomers
We give a geometric interpretation of the soft elastic deformation modes of
nematic elastomers, with explicit examples, for both uniaxial and biaxial
nematic order. We show the importance of body rotations in this non-classical
elasticity and how the invariance under rotations of the reference and target
states gives soft elasticity (the Golubovic and Lubensky theorem). The role of
rotations makes the Polar Decomposition Theorem vital for decomposing general
deformations into body rotations and symmetric strains. The role of the square
roots of tensors is discussed in this context and that of finding explicit
forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe
Measurement of Magnetic Relaxation in the peak regime of V3Si
Magnetization relaxation measurements are carried out in the Peak effect
regime of superconducting V3Si crystal, using Quantum Design SQUID
magnetometer. Relaxation in the increasing field scan is logarithmic in time,
consistent with the theory of flux creep. The relaxation on the decreasing
field scan however exhibits athermal behavior which is predominantly governed
by the flux avalanches triggered by the small external field perturbation
experienced by the superconductor during measurement scan in an inhomogeneous
field.Comment: PDF, 17 pages including 9 figure
COMPARATIVE PHARMACOKINETICS OF ORAL AND INTRAVENOUS IFOSFAMIDE/MESNA/METHYLENE BLUE THERAPY
This paper is available online at http://www.dmd.org ABSTRACT: Oral treatment with ifosfamide results in dose-limiting encephalopathy. Methylene blue is effective in reversal and prophylaxis of this side effect. In the present study, the pharmacokinetics of ifosfamide after iv and po therapy in combination with prophylactic administration of methylene blue were investigated. Nine patients with metastatic non-small cell lung cancer were treated by a combination of ifosfamide (3 days), sodium 2-mercaptoethane sulfonate (4 days), and etoposide (8 days). Cycles were repeated every 28 days. Ifosfamide was administered orally, with the exception of one of the first two cycles, when it was administered as a short infusion (randomly assigned). The patients received methylene blue in doses of 50 mg po 3 times daily; an initial dose of 50 mg was given the evening before chemotherapy. Urine samples were collected over the entire treatment period, and concentrations of ifosfamide and its major metabolite, 2-chloroethylamine, were measured by gas liquid chromatography. By the same technique, 2-and 3-dechloroethylifosfamide were determined in plasma and urine. Overall alkylating activity in urine was assayed by reaction of the alkylating metabolites with 4-(4-nitrobenzyl)-pyridine. The chemotherapeutic regimen was well-tolerated by all of the patients studied. There was no evidence of a shift in the metabolic pattern dependent on the route of administration. From the data, we conclude that methylene blue has a neuroprotective effect and that the pharmacokinetics of ifosfamide are not influenced by its comedication
Plasticity and memory effects in the vortex solid phase of twinned YBa2Cu3O7 single crystals
We report on marked memory effects in the vortex system of twinned YBa2Cu3O7
single crystals observed in ac susceptibility measurements. We show that the
vortex system can be trapped in different metastable states with variable
degree of order arising in response to different system histories. The pressure
exerted by the oscillating ac field assists the vortex system in ordering,
locally reducing the critical current density in the penetrated outer zone of
the sample. The robustness of the ordered and disordered states together with
the spatial profile of the critical current density lead to the observed memory
effects
Peak effect, vortex-lattice melting-line and order - disorder transition in conventional and high-T superconductors
We investigate the order - disorder transition line from a Bragg glass to an
amorphous vortex glass in the H-T phase diagram of three-dimensional type-II
superconductors with account of both pinning-caused and thermal fluctuations of
the vortex lattice. Our approach is based on the Lindemann criterion and on
results of the collective pinning theory and generalizes previous work of other
authors. It is shown that the shapes of the order - disorder transition line
and the vortex lattice melting curve are determined only by the Ginzburg
number, which characterizes thermal fluctuations, and by a parameter which
describes the strength of the quenched disorder in the flux-line lattice. In
the framework of this unified approach we obtain the H-T phase diagrams for
both conventional and high-Tc superconductors. Several well-known experimental
results concerning the fishtail effect and the phase diagram of high-Tc
superconductors are naturally explained by assuming that a peak effect in the
critical current density versus H signalizes the order - disorder transition
line in superconductors with point defects.Comment: 15 pages including 11 figure
Slow stress relaxation in randomly disordered nematic elastomers and gels
Randomly disordered (polydomain) liquid crystalline elastomers align under
stress. We study the dynamics of stress relaxation before, during and after the
Polydomain-Monodomain transition. The results for different materials show the
universal ultra-slow logarithmic behaviour, especially pronounced in the region
of the transition. The data is approximated very well by an equation Sigma(t) ~
Sigma_{eq} + A/(1+ Alpha Log[t]). We propose a theoretical model based on the
concept of cooperative mechanical resistance for the re-orientation of each
domain, attempting to follow the soft-deformation pathway. The exact model
solution can be approximated by compact analytical expressions valid at short
and at long times of relaxation, with two model parameters determined from the
data.Comment: 4 pages (two-column), 5 EPS figures (included via epsfig
Differential-thermal analysis around and below the critical temperature Tc of various low-Tc superconductors: A comparative study
We present specific-heat data on the type-II superconductors V3Si, LuNi2B2C
and NbSe2 which were acquired with a low-temperature thermal analysis (DTA)
technique. We compare our data with available literature data on these
superconductors. In the first part we show that the DTA technique allows for
fast measurements while providing a very high resolution on the temperature
scale. Sharp features in the specific heat such as at the one at the transition
to superconductivity are resolved virtually without instrumental broadening. In
the second part we investigate the magnetic-field dependence of the specific
heats of V3Si and LuNi2B2C at a fixed temperature T=7.5K to demonstrate that
DTA techniques also allow for sufficiently precise measurements of absolute
values of cp even in the absence of a sharp phase transition. The corresponding
data for V3Si and LuNi2B2C are briefly discussed
Evolution of the fishtail-effect in pure and Ag-doped MG-YBCO
We report on magnetic measurements carried out in a textured
YBaCuO and YBa(CuAg)O (at
0.02) crystals. The so-called fishtail-effect (FE) or second
magnetization peak has been observed in a wide temperature range
0.4~~0.8 for . The origin of the FE arises for
the competition between surface barrier and bulk pinning. This is confirmed in
a non-monotonically behavior of the relaxation rate . The value
for Ag-doped crystals is larger than for the pure one due to the presence of
additional pinning centers, above all on silver atoms.Comment: 6 pages, 6 figure
New insights into the nature of semi-soft elasticity and “mechanical-Fréedericksz transitions” in liquid crystal elastomers
The mechanical properties of an all-acrylate Liquid Crystal Elastomer (LCE) with a glass transition of 14±1°C are reported. The highly nonlinear load curve has a characteristic shape associated with semi-soft elasticity (SSE). Conversely, measurements of the director orientation throughout tensile loading instead indicate a “mechanical-Fréedericksz” transition (MFT). Values of the step length anisotropy, r, are independently calculated from the theories of SSE (r= 3.2±0.4), MFT (9.3<r<30.0) and thermally-induced length change (r=3.8±0.5). From simultaneously recorded polarising microscopy textures, the consequences of the above discrepancies are considered. Further, a mechanically-induced negative order parameter is observed. Results show the tensile load curve shape cannot solely be used to determine the underlying physics. Consequently, the LCE properties cannot be fully described by theories of SSE or MFTs alone. This suggests that the theory of LCEs is not yet complete. The conclusions suggest that both the LC order parameter and r must be functions of the mechanical deformation
- …