18,170 research outputs found
Conversion efficiency and luminosity for gamma-proton colliders based on the LHC-CLIC or LHC-ILC QCD Explorer scheme
Gamma-proton collisions allow unprecedented investigations of the low x and
high regions in quantum chromodynamics. In this paper, we investigate
the luminosity for "ILC"LHC ( TeV) and
"CLIC"LHC ( TeV) based colliders. Also
we determine the laser properties required for high conversion efficiency.Comment: 16, 6 figure
Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases
We describe the production and characterization of microelectromagnets made
for trapping and manipulating atomic ensembles. The devices consist of 7
fabricated parallel copper conductors 3 micrometer thick, 25mm long, with
widths ranging from 3 to 30 micrometer, and are produced by electroplating a
sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A /
cm^2 are achieved in continuous mode operation. The device operates
successfully at a base pressure of 10^-11 mbar. The microstructures permit the
realization of a variety of magnetic field configurations, and hence provide
enormous flexibility for controlling the motion and the shape of Bose-Einstein
condensates.Comment: 4 pages, 3 figure
Omniview motionless camera orientation system
A device for omnidirectional image viewing providing pan-and-tilt orientation, rotation, and magnification within a hemispherical field-of-view that utilizes no moving parts. The imaging device is based on the effect that the image from a fisheye lens, which produces a circular image of at entire hemispherical field-of-view, which can be mathematically corrected using high speed electronic circuitry. More specifically, an incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical field-of-view without the need for any mechanical mechanisms. The preferred embodiment of the image transformation device can provide corrected images at real-time rates, compatible with standard video equipment. The device can be used for any application where a conventional pan-and-tilt or orientation mechanism might be considered including inspection, monitoring, surveillance, and target acquisition
Statistical model of the powder flow regulation by nanomaterials
Fine powders often tend to agglomerate due to van der Waals forces between
the particles. These forces can be reduced significantly by covering the
particles with nanoscaled adsorbates, as shown by recent experiments. In the
present work a quantitative statistical analysis of the effect of powder flow
regulating nanomaterials on the adhesive forces in powders is given. Covering
two spherical powder particles randomly with nanoadsorbates we compute the
decrease of the mutual van der Waals force. The dependence of the force on the
relative surface coverage obeys a scaling form which is independent of the used
materials. The predictions by our simulations are compared to the experimental
results.Comment: 18 pages, 9 figures, 1 table, LaTeX; reviewed version with minor
changes, published (Powder Technology
Direct Measurement of intermediate-range Casimir-Polder potentials
We present the first direct measurements of Casimir-Polder forces between
solid surfaces and atomic gases in the transition regime between the
electrostatic short-distance and the retarded long-distance limit. The
experimental method is based on ultracold ground-state Rb atoms that are
reflected from evanescent wave barriers at the surface of a dielectric glass
prism. Our novel approach does not require assumptions about the potential
shape. The experimental data confirm the theoretical prediction in the
transition regime.Comment: 4 pages, 3 figure
Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry
We investigate the response of two-dimensional pattern forming systems with a
broken up-down symmetry, such as chemical reactions, to spatially resonant
forcing and propose related experiments. The nonlinear behavior immediately
above threshold is analyzed in terms of amplitude equations suggested for a
and ratio between the wavelength of the spatial periodic forcing
and the wavelength of the pattern of the respective system. Both sets of
coupled amplitude equations are derived by a perturbative method from the
Lengyel-Epstein model describing a chemical reaction showing Turing patterns,
which gives us the opportunity to relate the generic response scenarios to a
specific pattern forming system. The nonlinear competition between stripe
patterns and distorted hexagons is explored and their range of existence,
stability and coexistence is determined. Whereas without modulations hexagonal
patterns are always preferred near onset of pattern formation, single mode
solutions (stripes) are favored close to threshold for modulation amplitudes
beyond some critical value. Hence distorted hexagons only occur in a finite
range of the control parameter and their interval of existence shrinks to zero
with increasing values of the modulation amplitude. Furthermore depending on
the modulation amplitude the transition between stripes and distorted hexagons
is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review
Fourier transform pure nuclear quadrupole resonance by pulsed field cycling
We report the observation of Fourier transform pure NQR by pulsed field cycling. For deuterium, well resolved spectra are obtained with high sensitivity showing the low frequency nu0 lines and allowing assignments of quadrupole couplings and asymmetry parameters to inequivalent deuterons. The technique is ideally applicable to nuclei with low quadrupolar frequencies (e.g., 2D, 7Li, 11B, 27Al, 23Na, 14N) and makes possible high resolution structure determination in polycrystalline or disordered materials
Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED
We investigate the influence of the electron-phonon interaction on the decay
dynamics of a quantum dot coupled to an optical microcavity. We show that the
electron-phonon interaction has important consequences on the dynamics,
especially when the quantum dot and cavity are tuned out of resonance, in which
case the phonons may add or remove energy leading to an effective non-resonant
coupling between quantum dot and cavity. The system is investigated using two
different theoretical approaches: (i) a second-order expansion in the bare
phonon coupling constant, and (ii) an expansion in a polaron-photon coupling
constant, arising from the polaron transformation which allows an accurate
description at high temperatures. In the low temperature regime we find
excellent agreement between the two approaches. An extensive study of the
quantum dot decay dynamics is performed, where important parameter dependencies
are covered. We find that in general the electron-phonon interaction gives rise
to a greatly increased bandwidth of the coupling between quantum dot and
cavity. At low temperature an asymmetry in the quantum dot decay rate is
observed, leading to a faster decay when the quantum dot has a larger energy
than to the cavity. We explain this as due to the absence of phonon absorption
processes. Furthermore, we derive approximate analytical expressions for the
quantum dot decay rate, applicable when the cavity can be adiabatically
eliminated. The expressions lead to a clear interpretation of the physics and
emphasizes the important role played by the effective phonon density,
describing the availability of phonons for scattering, in quantum dot decay
dynamics. Based on the analytical expressions we present the parameter regimes
where phonon effects are expected to be important. Also, we include all
technical developments in appendices.Comment: published PRB version, comments are very welcom
- …
