143 research outputs found

    Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain

    Get PDF
    Transcranial magnetic stimulation (TMS) is a non-invasive technique that uses the principle of electromagnetic induction to generate currents in the brain via pulsed magnetic fields. The magnitude of such induced currents is unknown. In this study we measured the TMS induced current densities in a patient with implanted depth electrodes for epilepsy monitoring. A maximum current density of 12 microA/cm2 was recorded at a depth of 1 cm from scalp surface with the optimum stimulation orientation used in the experiment and an intensity of 7% of the maximal stimulator output. During TMS we recorded relative current variations under different stimulating coil orientations and at different points in the subject's brain. The results were in accordance with current theoretical models. The induced currents decayed with distance form the coil and varied with alterations in coil orientations. These results provide novel insight into the physical and neurophysiological processes of TMS

    Explaining and inducing savant skills: privileged access to lower level, less-processed information

    Get PDF
    I argue that savant skills are latent in us all. My hypothesis is that savants have privileged access to lower level, less-processed information, before it is packaged into holistic concepts and meaningful labels. Owing to a failure in top-down inhibition, they can tap into information that exists in all of our brains, but is normally beyond conscious awareness. This suggests why savant skills might arise spontaneously in otherwise normal people, and why such skills might be artificially induced by low-frequency repetitive transcranial magnetic stimulation. It also suggests why autistic savants are atypically literal with a tendency to concentrate more on the parts than on the whole and why this offers advantages for particular classes of problem solving, such as those that necessitate breaking cognitive mindsets. A strategy of building from the parts to the whole could form the basis for the so-called autistic genius. Unlike the healthy mind, which has inbuilt expectations of the world (internal order), the autistic mind must simplify the world by adopting strict routines (external order)

    Genomic legacy of migration in endangered caribou

    Get PDF
    Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as “migrants” can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population

    Effect of a single acupuncture treatment on surgical wound healing in dogs: a randomized, single blinded, controlled pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to investigate the effect of acupuncture on wound healing after soft tissue or orthopaedic surgery in dogs.</p> <p>Methods</p> <p>29 dogs were submitted to soft tissue and/or orthopaedic surgeries. Five dogs had two surgical wounds each, so there were totally 34 wounds in the study. All owners received instructions for post operative care as well as antibiotic and pain treatment. The dogs were randomly assigned to treatment or control groups. Treated dogs received one dry needle acupuncture treatment right after surgery and the control group received no such treatment. A veterinary surgeon that was blinded to the treatment, evaluated the wounds at three and seven days after surgery in regard to oedema (scale 0-3), scabs (yes/no), exudate (yes/no), hematoma (yes/no), dermatitis (yes/no), and aspect of the wound (dry/humid).</p> <p>Results</p> <p>There was no significant difference between the treatment and control groups in the variables evaluated three and seven days after surgery. However, oedema reduced significantly in the group treated with acupuncture at seven days compared to three days after surgery, possibly due the fact that there was more oedema in the treatment group at day three (although this difference was nor significant between groups).</p> <p>Conclusions</p> <p>The use of a single acupuncture treatment right after surgery in dogs did not appear to have any beneficial effects in surgical wound healing.</p

    Rapid and Reversible Recruitment of Early Visual Cortex for Touch

    Get PDF
    The loss of vision has been associated with enhanced performance in non-visual tasks such as tactile discrimination and sound localization. Current evidence suggests that these functional gains are linked to the recruitment of the occipital visual cortex for non-visual processing, but the neurophysiological mechanisms underlying these crossmodal changes remain uncertain. One possible explanation is that visual deprivation is associated with an unmasking of non-visual input into visual cortex.We investigated the effect of sudden, complete and prolonged visual deprivation (five days) in normally sighted adult individuals while they were immersed in an intensive tactile training program. Following the five-day period, blindfolded subjects performed better on a Braille character discrimination task. In the blindfold group, serial fMRI scans revealed an increase in BOLD signal within the occipital cortex in response to tactile stimulation after five days of complete visual deprivation. This increase in signal was no longer present 24 hours after blindfold removal. Finally, reversible disruption of occipital cortex function on the fifth day (by repetitive transcranial magnetic stimulation; rTMS) impaired Braille character recognition ability in the blindfold group but not in non-blindfolded controls. This disruptive effect was no longer evident once the blindfold had been removed for 24 hours.Overall, our findings suggest that sudden and complete visual deprivation in normally sighted individuals can lead to profound, but rapidly reversible, neuroplastic changes by which the occipital cortex becomes engaged in processing of non-visual information. The speed and dynamic nature of the observed changes suggests that normally inhibited or masked functions in the sighted are revealed by visual loss. The unmasking of pre-existing connections and shifts in connectivity represent rapid, early plastic changes, which presumably can lead, if sustained and reinforced, to slower developing, but more permanent structural changes, such as the establishment of new neural connections in the blind

    Association study of candidate DNA-repair gene variants and acute graft versus host disease in pediatric patients receiving allogeneic hematopoietic stem-cell transplantation

    Get PDF
    Acute Graft versus Host Disease (aGvHD) grades 2-4 occurs in 15-60% of pediatric patients undergoing allogeneic haematopoietic stem-cell transplantation (allo-HSCT). The collateral damage to normal tissue by conditioning regimens administered prior to allo-HSCT serve as an initial trigger for aGvHD. DNA-repair mechanisms may play an important role in mitigating this initial damage, and so the variants in corresponding DNA-repair protein-coding genes via affecting their quantity and/or function. We explored 51 variants within 17 DNA-repair genes for their association with aGvHD grades 2-4 in 60 pediatric patients. The cumulative incidence of aGvHD 2-4 was 12% (n = 7) in the exploratory cohort. MGMT rs10764881 (G>A) and EXO rs9350 (c.2270C>T) variants were associated with aGvHD 2-4 [Odds ratios = 14.8 (0 events out of 40 in rs10764881 GG group) and 11.5 (95% CI: 2.3-191.8), respectively, multiple testing corrected p A) remained significant (adjusted HR = 2.05 [95% CI: 1.06-3.94]; p = 0.03) in the presence of other clinical risk factors. Higher MGMT expression was seen in GG carriers for rs10764881 and was associated with higher IC50 of Busulfan in lymphoblastoid cells. MGMT rs10764881 carrier status could predict aGvHD occurrence in pediatric patients undergoing allo-HSCT.Transplantation and immunomodulatio

    Split T Cell Tolerance against a Self/Tumor Antigen: Spontaneous CD4+ but Not CD8+ T Cell Responses against p53 in Cancer Patients and Healthy Donors

    Get PDF
    Analyses of NY-ESO-1-specific spontaneous immune responses in cancer patients revealed that antibody and both CD4+ and CD8+ T cell responses were induced together in cancer patients. To explore whether such integrated immune responses are also spontaneously induced for other tumor antigens, we have evaluated antibody and T cell responses against self/tumor antigen p53 in ovarian cancer patients and healthy individuals. We found that 21% (64/298) of ovarian cancer patients but no healthy donors showed specific IgG responses against wild-type p53 protein. While none of 12 patients with high titer p53 antibody showed spontaneous p53-specific CD8+ T cell responses following a single in vitro sensitization, significant p53-specific IFN-γ producing CD4+ T cells were detected in 6 patients. Surprisingly, similar levels of p53-specific CD4+ T cells but not CD8+ T cells were also detected in 5/10 seronegative cancer patients and 9/12 healthy donors. Importantly, p53-specific CD4+ T cells in healthy donors originated from a CD45RA− antigen-experienced T cell population and recognized naturally processed wild-type p53 protein. These results raise the possibility that p53-specific CD4+ T cells reflect abnormalities in p53 occurring in normal individuals and that they may play a role in processes of immunosurveillance or immunoregulation of p53-related neoplastic events

    Do You See What I Mean? Corticospinal Excitability During Observation of Culture-Specific Gestures

    Get PDF
    People all over the world use their hands to communicate expressively. Autonomous gestures, also known as emblems, are highly social in nature, and convey conventionalized meaning without accompanying speech. To study the neural bases of cross-cultural social communication, we used single pulse transcranial magnetic stimulation (TMS) to measure corticospinal excitability (CSE) during observation of culture-specific emblems. Foreign Nicaraguan and familiar American emblems as well as meaningless control gestures were performed by both a Euro-American and a Nicaraguan actor. Euro-American participants demonstrated higher CSE during observation of the American compared to the Nicaraguan actor. This motor resonance phenomenon may reflect ethnic and cultural ingroup familiarity effects. However, participants also demonstrated a nearly significant (p = 0.053) actor by emblem interaction whereby both Nicaraguan and American emblems performed by the American actor elicited similar CSE, whereas Nicaraguan emblems performed by the Nicaraguan actor yielded higher CSE than American emblems. The latter result cannot be interpreted simply as an effect of ethnic ingroup familiarity. Thus, a likely explanation of these findings is that motor resonance is modulated by interacting biological and cultural factors

    Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition

    Get PDF
    Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others

    Genetic susceptibility to hepatic sinusoidal obstruction syndrome in pediatric patients undergoing hematopoietic stem cell transplantation

    Get PDF
    Sinusoidal obstruction syndrome (SOS) is a well-recognized and potentially life-threatening complication of hematopoietic stem cell transplantation (HSCT). SOS arises from endothelial cell damage and hepatocellular injury mostly due to the transplantation conditioning regimens but also to other patient, disease, and treatment-related factors. Understanding risk factors associated with the development of SOS is critical for early initiation of treatment or prophylaxis. The knowledge about genetic contribution is limited; few studies investigated so far selected a set of genes. To get more comprehensive insight in the genetic component, we performed an exome-wide association study using genetic variants derived from whole-exome sequencing. The analyses were performed in a discovery cohort composed of 87 pediatric patients undergoing HSCT following a busulfan-containing conditioning regimen. Eight lead single-nucleotide polymorphisms (SNPs) were identified after correction for multiple testing and subsequently analyzed in a validation cohort (n = 182). Three SNPs were successfully replicated, including rs17146905 ( P = .001), rs16931326 ( P = .04), and rs2289971 ( P = .03), located respectively in the UGT2B10, BHLHE22, and KIAA1715 genes. UGT2B10 and KIAA1715 were retained in a multivariable model while controlling for nongenetic covariates and previously identified risk variants in the GSTA1 promoter. The modulation of associations by conditioning regimens was noted; KIAA1715 was dependent on the intensity of the conditioning regimen, whereas the effect of UGT2B10 was equally applicable to all of them. Combined effect of associated loci was also observed ( P = .00006) with a genotype-related SOS risk of 9.8. To our knowledge, this is the first study addressing the genetic component of SOS at an exome-wide level and identifying novel genetic variations conferring a higher risk of SOS, which might be useful for personalized prevention and treatment strategies. (C) 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.Transplantation and immunomodulatio
    corecore