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Abstract

Wide-ranging animals, including migratory species, are significantly threatened by the effects

of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in

nearly a quarter of species being at risk of extinction. Caribou are one such example of a

wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the

proportion of individuals considered as “migrants” can vary dramatically. There is therefore a

possibility that, under the condition that migratory behavior is genetically determined, those

individuals or populations that are migratory will be further impacted by humans, and this

impact could result in the permanent loss of the migratory trait in some populations. However,

genetic determination of migration has not previously been studied in an endangered terres-

trial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in

western North America and carried out genomic scans for the same individuals. Here we

determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster.

We also detect >50 SNPs associated with migratory behavior, which are in genes with

hypothesized roles in determining migration in other organisms. Furthermore, we determine

that propensity to migrate depends upon the proportion of ancestry in individual caribou, and

thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report,

migratory behavior is influenced by genes, caribou could be further impacted by the loss of

the migratory trait in some isolated populations already at low numbers. Our results indicating

an ancestral genetic component also suggest that the migratory trait and their associated

genetic mutations could not be easily re-established when lost in a population.
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Author summary

Genetic determination of migration has not previously been studied in an endangered ter-

restrial mammal. The use of global positioning system (GPS) transmitters permitted the

detection of migratory or sedentary movements of 139 endangered caribou. The presence

of both migratory and resident phenotypes in sympatry allowed for us to examine geno-

mic differences among individuals that had experienced similar environments prior to the

initiation of migration. In this study, we genotyped 139 caribou using RAD sequencing,

and used these genotypes to assess population structure and investigate potential genetic

associations with migration. We detected >50 SNPs associated to migration. These SNPs

were found in genes with hypothesized roles in determining migration in other organ-

isms. In addition, propensity to migrate depended upon the proportion of Northern or

Southern ancestry in individual caribou, and thus on the evolutionary history of its migra-

tory and sedentary subspecies dating back to the last glaciation. We believe that our con-

cerns for the loss of migration in caribou are transferable to other species and systems

where there are documented declines, and migration is likewise associated with genes. If–

as we reported–migratory behavior is determined by ancestral genes, species could be fur-

ther impacted, possibly by the loss of the migratory trait in some populations already at

low numbers. This loss could perhaps be averted with the maintenance of critical seasonal

habitats within and between seasonal ranges.

Introduction

Migration, the directional movement from one location to another and back, is observed in

numerous species of vertebrates [1], including approximately 36% of marine mammals and

about 1% of terrestrial mammals [2]. Migration allows animals to exploit seasonally and geo-

graphically variable resources (e.g. food, habitat, favorable climate, or breeding conditions) or

avoid unfavorable conditions (e.g. predators, disease) [3–5]. Wide-ranging animals, including

several migratory species, are severely threatened by the effects of habitat fragmentation (for

example, through the barriers encountered on migratory routes) and habitat loss [6,7].

The bases of animal migration, and the bases of its suite of characteristics (e.g. tendency to

migrate or not, timing, direction, and distance), remain largely unknown. Speculation on an

innate genetic program [8,9] has been supported by species with known genetic traits that prompt

the initiation of migration or minimize the cost of locomotion for efficient migration [10–12].

Migratory behavior could also be learned or dependent on physiological and nutritional condi-

tions [13–15], or even triggered by environmental ones [12,16]. Moreover, migratory behavior

could be influenced by the interaction of several of the aforementioned components [12,16,17].

Detecting and quantifying the phenotype and patterns of migration can be immensely chal-

lenging, with variation known to occur in the timing, direction, and distance of migration [3].

Application of GPS transmitters [18] to migratory species may reveal additional complexities.

For example, some species may be partially migratory, where within the same population only

a fraction of individuals migrate [19,20]. Despite the added complexity, the presence of both

migratory and resident phenotypes in the same population also allows for the testing of genetic

differences among individuals, while assuming exposure to an identical seasonal environment.

Several ungulates are partially migratory [21,22], and there is currently a lack of informa-

tion regarding the potentially fundamental genetic basis producing migratory and resident

individuals within these species’ partially migratory populations [22]. Genomic studies in par-

tial migratory populations have been conducted primarily in fish, birds, and insects [12,23],
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whereas in ungulates, studies have been mainly based on a handful of neutral molecular mark-

ers [24,25]. Partial migration is present in all subspecies and ecotypes (see [26] for a definition)

of caribou (Rangifer tarandus), but in different proportions. For example, caribou living in for-

ested areas are thought to be mainly sedentary, whereas caribou living in the tundra are con-

sidered primarily migratory [27]. Migration allows caribou to access seasonally and

geographically variable resources, as well as avoid unfavorable conditions [28]. For example,

during migration, Barren-ground caribou may move in large aggregations, and it is under-

stood that this herding behavior results in dilution of predation risk per unit caribou [27].

The two behaviors (propensity to migrate and propensity for being sedentary) likely

emerged during glacial eras when separate caribou lineages evolved north (Beringian–Eurasian

lineage—BEL) and south (North America lineage—NAL) of the continental ice sheet, in areas

dominated by tundra and forests, respectively [24,29]. However, following the last deglacia-

tion, a post-secondary contact between the two lineages occurred, resulting in hybrid zones,

such as in the Rocky Mountains. There, the probability of being migratory is higher in individ-

uals carrying mitochondrial haplotypes of the BEL type [24], suggesting a possible genetic

determination of migration, but not ruling out a cultural component, as calves grow up with

their mothers and mtDNA is maternally inherited.

Caribou are wide-ranging and migratory, and many of their populations (also referred to as

“herds”, as they might not be genetically or ecologically distinct) are threatened, endangered, or

already extirpated [26,30]. In threatened populations of caribou, the proportion of individuals

classified as “migrants” can vary dramatically, with some populations reported as being either

fully migratory or fully sedentary [24], and Williams et al. [31] claimed that habitat loss is respon-

sible of the endangerment of migratory caribou in particular. There is therefore a possibility that,

under the condition that migratory behavior is genetically determined, those individuals or popu-

lations that are migratory will be further impacted by humans (compared to species were migra-

tion is not genetically determined). This impact could result in the permanent loss of the

migratory trait in some populations. However, despite this concern, genetic determination of

migration has not previously been studied in caribou, or in other threatened terrestrial mammals.

We studied the genetic basis of migration in endangered caribou. We examined western

North American caribou belonging to three ecotypes (Boreal, Central Mountain, and North-

ern Mountain) within the Woodland subspecies (R. t. caribou). We also examined caribou

belonging to the Barren-ground ecotype, which forms its own subspecies (R. t. groenlandicus–
Fig 1). Here, we aimed at determining seasonal movement and genomic variation of single

nucleotide polymorphisms (SNPs) in 139 caribou individuals (Fig 1 and Fig A in S1 Text). We

also aimed at detecting associations between migratory behavior and genes known to influence

migratory tendency in other organisms. Finally, we aimed at testing whether the propensity to

migrate also depended upon the proportion of Northern or Southern ancestry in individual

caribou, and thus on the evolutionary history of its migratory and sedentary subspecies.

Results

Genetic structure: Two main caribou clusters detected

We analyzed samples from 190 female caribou, focusing on females because they are funda-

mental to the management of this endangered species. We identified SNPs using a RAD -seq

approach. The dataset comprised 28K SNPs, after excluding linked SNPs and those not in

Hardy-Weinberg equilibrium. We then used the maximum likelihood based method imple-

mented by the program Admixture for partitioning genetic clusters (K) and found support for

at most two populations (K = 2), including a Northern and Southern cluster (mean QNorth =

0.92, SD = 0.09; mean QSouth = 0.81; where Q = proportion of ancestry) (Fig 2A and 2B, and

PLOS GENETICS Genes, ancestry and migratory behaviour in caribou

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009974 February 10, 2022 3 / 25

https://doi.org/10.1371/journal.pgen.1009974


PLOS GENETICS Genes, ancestry and migratory behaviour in caribou

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009974 February 10, 2022 4 / 25

https://doi.org/10.1371/journal.pgen.1009974


Fig B in S1 Text). The Northern cluster was formed by individuals (n = 103) of the Barren-

ground subspecies and by most Woodland caribou in the Northern Mountain ecotype (those

from Yukon). The Southern cluster included Woodland caribou individuals (n = 87) belong-

ing to the Boreal and Central Mountain ecotypes, and caribou of the Northern Mountain eco-

type from central-northern British Columbia. The differentiation index FST between the

Northern and Southern clusters was 0.0171 (C.I. = 0.0166–0.0174). The next partition (K = 3;

Fig 2C and 2D) identified a third subdivision consisting mainly of Boreal (n = 42; mean

Q = 0.87, SD = 0.18) and Central Mountain individuals (n = 43; mean Q = 0.85, SD = 0.12). A

principal component analysis (PCA), conducted with the program SmartPCA within Eigen-
strat, also revealed genetic separation between North and South cluster caribou along the first

axis, with the PCA plots closely resembling the geographic distribution of samples (Fig 3).

Presence of migratory behavior in each subspecies and ecotype

We studied caribou migratory behavior by analyzing telemetry locations of 139 of the 190

females sampled for genetic analysis above (Fig 4 and Table A in S1 Text). For 116 caribou for

which there was sufficient location data across seasons, we determined summer and winter

ranges with the adehabitHR R movement ecology package. We calculated an index of overlap

(IO) between seasonal ranges (higher and lower values indicating resident and migratory

behavior, respectively; Fig 5A and 5C). IO for Boreal caribou (mean = 0.29) was greater than

that of Northern Mountain (mean = 0.10; pairwise Wilcoxon Rank Sum test, p<0.001) and

Barren-ground caribou (mean = 0.07; p<0.001). In addition, we conducted Net Square Dis-

placement (NSD) analyses with the R packageMigrateR on the 102 animals that had at least

one location data point per day for an entire year of data. Out of these, 83 caribou individuals

were classified as migrants (Barren-ground subspecies, n = 44/46; Northern Mountain eco-

type, n = 31/40; Boreal ecotype, n = 8/11); remaining 14 caribou were classified as residents

using this statistically conservative approach (Figs 5B and 5D); and 5 caribou were classified as

either migrants or residents in different years.

We calculated the distance and timing of migration for each caribou, again using the R

packageMigrateR. Average departure dates (when animals started to migrate in the spring)

were not significantly different between caribou ecotypes (Kruskal–Wallis test, p = 0.16)

(Table A in S1 Text). The distance of migration calculated for the Barren-ground caribou

(mean = 247.61 km) was significantly greater than for Boreal (mean = 10.31; pairwise Wil-

coxon Rank Sum test—p<0.001) and Northern Mountain individuals (mean = 42.92 km;

p<0.001). Migration distances for Northern Mountain caribou were also greater (p<0.001)

than for Boreal caribou. During spring migration, Barren-ground caribou moved, on average,

more northward than other caribou (Northern Mountain, p<0.001; Boreal, p<0.001).

Caribou migratory behavior associated with genes involved in brain

activity, fat and energy metabolism, body development, and hormones’

production

Using the program Gemma, we tested the association between each SNP (a dataset comprising

29K non-linked SNPs) and each of the five measurements of migratory behavior described

Fig 1. Caribou sampled in western North America. Black numbered circles indicate sampled populations (also referred to as “herds”, as they might not

be genetically or ecologically distinct). Grey-scale polygons show the distribution of subspecies and ecotypes: diagonal black lines represent the Barren-

ground subspecies (R. t. groenlandicus); horizontal lines, light gray, and black represent Northern Mountain, Boreal and Central Mountain, ecotypes,

respectively, within the Woodland caribou subspecies (R. t. caribou). Basemap layers available from: https://www12.statcan.gc.ca/census-recensement/

2011/geo/bound-limit/bound-limit-eng.cfm and https://international.ipums.org/international/gis.shtml.

https://doi.org/10.1371/journal.pgen.1009974.g001
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Fig 2. Caribou genetic clusters in western North America. (A)/(B) and (C)/(D) show the best and second best

number of clusters (K = 2 or 3, respectively) describing population structure. Further subdivisions (K>3) were not

supported by the program Admixture. Pie charts (A and C) and bar plots (B and D) indicate proportions of ancestry

for each individual. Subspecies and ecotype belonging of individuals are indicated to the right of the bar plots: BG

refers to the Barren-ground subspecies; NM, CM and Boreal refer to the Northern Mountain, Central Mountain and
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above: (1) index of seasonal ranges overlap, (2) NSD classification of animals as migratory or

resident, as well as (3) distance, (4) departure timing, and (5) latitudinal shift of migration. As

is the case for all association studies, associations can be influenced by the demographic history

of individuals; therefore, in our regression models we corrected for neutral genetic structure

by employing a relatedness matrix that could contribute the genomic inflation factors of 1.33,

1.88, 0.33, 0.24, and 0.37 for IO, NSD classification, and distance, timing, and latitudinal shift

of migration, respectively. Genomic inflation factors >1 indicated potential for additional

effects of genetic structure on the phenotype. We detected 57 SNPs significantly associated

(p<0.05 after Bonferroni correction) with migratory propensity in caribou (Table 1 and

Table B and Fig C in S1 Text). Three loci were associated with the IO, one of which had the

strongest association detected (SNP in gene UBE3D; p = 3.35x10-12, Fig C in S1 Text); 54 addi-

tional loci were instead associated with the binary classification of animals as either sedentary

or migratory. The relative contribution of phenotypic variance (PVE) explained by each of the

SNPs associated with migratory behavior ranged from 1.6 to 34.4% (Table B in S1 Text).

Twenty-seven SNPs were located in or potentially linked (within 2 Kb) to 21 genes (n,

intron = 21 SNPs, exon = 5, promoter = 1) and their functions included brain activity, fat and

energy metabolism, body development, and hormones’ production (Table 1 and Table B in S1

Text; function of genes determined using the program Ensembl BioMart).
We examined pairwise differences in minor allele frequency (MAF) between the clusters

identified with the Admixture program (above) for the 57 migration-associated SNPs. Differ-

ences inMAF were found between the North and South clusters (K = 2; Kruskal–Wallis test,

p<0.001), between the North and Mountain clusters (K = 3; p<0.001), and between the Moun-

tain and Boreal clusters (K = 3; p<0.001 –Fig D and Table C in S1 Text). A PCA (Fig E in S1

Boreal ecotypes, respectively, within the Woodland subspecies. For NM individuals we also indicate their location in

either Yukon (NM-Y, further North), or British Columbia (NM-B) provinces. Basemap layer available from https://

www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm and https://international.

ipums.org/international/gis.shtml.

https://doi.org/10.1371/journal.pgen.1009974.g002

Fig 3. Principal component analysis (PCA) plots of caribou individuals in western North America. Each dot

represents a caribou and colors in panels (A) and (B) represent groupings at K = 2 and K = 3, respectively, determined

using the program Admixture (see Fig 2). PCA was calculated examining 28K SNP data.

https://doi.org/10.1371/journal.pgen.1009974.g003
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Text) calculated using only the 57 migration-associated SNPs indicated groupings that were

less discrete than those obtained with population structure analyses including all SNPs

(above).

Caribou migratory behavior of individuals within ecotypes depended upon

ancestry

We conducted regression analyses of caribou migratory behavior, as it was evaluated with

either ranges overlap or seasonal displacement methods, dependent upon the admixture pro-

portion of ancestries (Q). Results indicated that, even when accounting for ecotype differences,

sedentary behavior of individuals was influenced by that individual’s proportion of assignment

to the Boreal cluster (Table 2). Moreover, when accounting for ecotype differences, migratory

behavior was positively associated with an individual’s proportion of assignment to the North

cluster (Fig 6 and Table D in S1 Text). Specifically, overlap between summer and winter ranges

(IO, an indication of sedentary behavior) was dependent upon Q of the Boreal/South cluster

obtained at K = 2 (β = -0.19; p<0.001; R2 = 0.18) and K = 3 (β = 0.29; p<0.001; R2 = 0.04;

accounting for ecotype; Table 2). Similarly, individual migration assessed with NSD depended

on Q of the North cluster obtained at both K = 2 (β = 1.81; p = 0.03; R2 = 0.06) and K = 3 (β =

1.69; p = 0.04; R2 = 0.08; accounting for ecotype; Table D in S1 Text).

Results of linear regression analyses examining dependence of overlap between summer

and winter ranges (IO, an indication of sedentary behavior) upon admixture proportion (Q)

for two or three caribou clusters (K); Beta coefficient (β), Standard error, t value, p-value, and

AIC are indicated, while the models in parentheses account for caribou ecotype as a random

effect. Models in bold are significant; IO = ranging from 0 (migrant) to 1 (fully sedentary).

Discussion

We used an integrated approach of ecology and genomics to study the genetic basis and ances-

try of migratory behavior in caribou. Here we document the seasonal movements of GPS-col-

lared caribou and, surprisingly, detect the presence of individual migrants in all subspecies

Fig 4. Occurrence of migratory behavior across caribou ecotypes. Histograms represent number of individuals in

each ecotype with varying degrees of seasonal ranges overlap. In this study, we correlated genetic traits with this

information: sedentary behaviour tendency represented by seasonal ranges overlap—a continuous variable.

https://doi.org/10.1371/journal.pgen.1009974.g004
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Fig 5. Seasonal movement patterns monitored with GPS-collars for a migratory caribou and for a sympatric

resident caribou. (A) and (C) show winter and summer locations. For each caribou (A) shows a complete separation

of the seasonal ranges, typical of a migratory animal, while the animal in (C) has ranges overlap and is considered

sedentary. (B) and (D) show Net Square Displacement (NSD) plots for the same individuals, between a starting

telemetry location and each subsequent location in a year period. (B) The displacement is best represented by a bell

curve (marked with continuous line above) when the animal is migratory. (D) An animal is classified as sedentary

when the best fitting line quickly reaches an asymptote. Dark grey dots represent actual telemetry locations. Solid lines

represent the best fitted models, whereas other lines represent unsupported models of seasonal movement (mixed-
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and ecotypes. Caribou migratory behavior was found to be associated to genes known to influ-

ence migratory propensity in other organisms. We also determined a genetic subdivision of

caribou into a Northern and a Southern genetic cluster, with individuals possessing varying

degrees of such ancestries. Finally, our findings indicate that the propensity to migrate

depends upon the proportion of ancestry in individual caribou, therefore suggesting a genomic

legacy of migration in endangered caribou.

Genes influencing migratory behavior in caribou: A package common in

other migratory species?

We identified an association between individual variation of migratory behavior and genotype

variation in a large terrestrial mammal: the caribou of western North America. Here we deter-

mine genetic mutations (i.e. SNPs) associated with migration detected via GPS collars in cari-

bou, by using an integrated approach involving technologies that are best suited to describe

migratory behavior. Some of the associated SNPs were intergenic, likely noncoding DNA and

therefore not involved in functions related to migration (Table B in S1 Text). Alternatively,

these SNPs were tagging other, unobserved SNPs that may be involved in migration. Because

our RAD-seq approach only covers a minor portion of the genome, additional SNPs that were

not assessed in this study may still be associated with the migration phenotype. However,

migrant, nomad or disperser). In this study, we correlated genetic traits with NSD characterization of individuals as

migrants. Basemap layers available from: https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/

bound-limit-eng.cfm and https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995.

https://doi.org/10.1371/journal.pgen.1009974.g005

Table 1. Candidate genes associated with migratory behavior in caribou.

SNP position Gene name Regulating for Found associated with/ in References

intron XPNPEP1 brain activity behavioral hyperactivity; cognitive deficits/ mouse, horse [32,33]

intron PAK3 mental disability/human, mouse [34,35]

intron HTRA1 cognitive impairment; mood disorders/human [36,37]

intron KIF5C malformations of cortical development (mental disease)/human, mouse [38,39]

exon DHX30 sleep disorder/ human [40]

intron ARNTL brain activity Circadian rhythmic expression/fish, mammals, insects, birds [12,41,42]

intron ANO1 Circadian rhythmic expression/mouse [43,44]

intron PARP1 Circadian rhythmic expression/human, mouse [45,46]

intron UBE3D fat and energy metabolism variation in fat deposition/sheep cattle [47,48]

intron ATF7 adipose differentiation/human [49,50]

intron TCF7 thermoregulation; variation in fat deposit/cow [51]

intron PSD3 diabetes; obesity/human [52]

intron TMEM163 diabetes; nutrient sensing/mouse, cattle, human [53,54]

intron MAPKAPK2 starvation; obesity; diabetes/mouse [55–57]

exon HMCN2 variation in stimuli response/pig [58,59]

promoter LPIN2 body development bone formation; ostiomelite; inflammation of junctures/human [60,61]

promoter THPO production of blood cells; body growth [62,63]

intron GPC6 bone growth; dwarfism/human, cow [64,65]

intron FAM155A diverticulitis (variation of intestinal morphology)/human [66]

intron POLR3B hormones’ production hypogonadism/human, mouse [67,68]

intron C14H8orf34 milk production; age at first parturition/cow [66,69]

Bold-face gene names are those associated to Index of Overlap. Reported loci were found directly in genes based on annotations of the bovine genome.

https://doi.org/10.1371/journal.pgen.1009974.t001
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some of our associated SNPs were found in genes with known or hypothesized mechanistic

roles in determining migration in other species, including circadian genes, genes involved in

sleep and cognitive disorders, and genes regulating fat metabolism and hormone’s production

(Table 1). Finally, propensity to migrate depended upon the proportion of Northern or South-

ern ancestry in individual caribou, and thus on the evolutionary history of its migratory and

sedentary subspecies [70] dating back to the last glaciation. Overall, our findings provide initial

evidence of an ancestral genes’ package common across migratory taxa that affects the propen-

sity to migrate.

Our study indicates that genes involved in brain activity could contribute to migration. In

particular, some migration-associated mutations were found in circadian genes (ARNTL,

Table 2. Dependence of individual caribou migration upon ancestry, while statistically controlling for ecotype.

Model (lm(IO) ~ β Std. Error t value Pr(>|t|) AIC

Admixture proportion (Q)–K = 2

South 0.187 0.038 4.871 3.61E-06 -133.35

Condition dependence upon ecotype belonging
South + (1|ecotype) 0.038 0.065 0.588 0.556 -122.433

Admixture proportion (Q)–K = 3

Boreal 0.229 0.037 6.258 7.05E-09 -145.67

North -0.158 0.035 -4.436 2.12E-05 -129.89

Mountain -0.094 0.066 -1.424 0.157 -113.46

Condition dependence upon ecotype belonging
Boreal + (1|ecotype) 0.228 0.037 6.146 7.93E-10 -131.835

North + (1|ecotype) -0.012 0.055 -0.222 0.824 -121.862

Mountain + (1|ecotype) -0.107 0.063 -1.698 0.089 -124.96

https://doi.org/10.1371/journal.pgen.1009974.t002

Fig 6. Regression plots between migratory tendency and proportion of genetic ancestry. (A) The overlap of

seasonal ranges (Index of Overlap, IO, lower in migrants) was negatively dependent upon an individual’s proportion of

assignment (Q) to the North cluster, determined using the program Admixture. Individual observations at K2 and K3

(i.e. clusters detected) are marked with circles and crosses, respectively. (B) The probability of being migratory as

indicated by Net Square Displacement (NSD) was positively dependent upon an individual’s belonging to the North

cluster also obtained at both K = 2 (continuous line) and K = 3 (broken line). Panel B includes results of logistic

regression, thus indicating a predicted relationship between a genetic trait and migration that is valid for any caribou.

https://doi.org/10.1371/journal.pgen.1009974.g006
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ANO1, and PARP1), perhaps indicating that the timing of seasonal movements might be

genetically influenced. Our findings therefore support the notion that animals synchronize

their movements during migration with the seasonal availability of necessary resources [9],

and migratory animals may keep track of the seasons using an endogenous timer [12]. Other

studies of caribou have claimed that the initiation of migration is influenced by environmental

conditions [28,71]; however, these may interact with genetics, as reported in other migratory

species [8,16]. Involvement of ARNTL, ANO1, and PARP1 in migratory behavior and seasonal-

ity has been reported in other species of mammals, fishes, and birds [43,72], and ARNTL in

particular has been shown to play a particularly major role [12,42].

Some migration-associated mutations were found in other brain activity genes involved in

sleep and cognitive disorders in mice and humans (prominently XPNPEP1 and PAK3).

Numerous migratory animals, including the caribou we monitored in this study, perform

long-distance migrations with only a few resting stops [9]. Therefore, migration might proceed

at a pace that does not allow migratory animals much time for sleep or rest, and the mutations

we detected may contribute to preserving cognitive and physical performance while migrating

[73].

Other migration-associated mutations were found in genes determining obesity and diabe-

tes in human, mice, sheep, and cattle (e.g. gene UBE3D and TCF7). This may indicate that,

thanks to specific genetic mutations, migratory caribou could enhance metabolization of fat

and carbohydrates to fuel energetically expensive migration. Migration is particularly energy-

demanding [9], so mutations such as those we documented could be beneficial [74,75]. In par-

ticular, UBE3D and TCF7 control the metabolism of fat—a primary fuel for migratory animals

[8,76].

In migratory caribou, we also documented mutations in genes involved in hormone pro-

duction, suggesting their potential role in regulating the timing of migration. The POLR3B
gene (associated with seasonal ranges overlap) regulates the sexual hormone GnRH, which in

turn has been found to control the timing of migration in fishes and birds [77,78]. Finally,

gene C14H8orf34, which was also associated with migration in this study’s caribou, is known

to determine parturition timing in cattle [66]. Therefore, our findings indicate a potential role

of genetics in the timing of caribou parturition, which is temporally correlated to the end of

migration (Bergerud et al. [27]).

Surprising presence of migrants in all caribou subspecies and ecotypes

Using genomics, this study confirms previously reported aspects of caribou taxonomy in west-

ern North America, since the two clusters we describe tend to correspond to currently known

subspecies, as determined with autosomal microsatellites [24,79]. However, we detect a bound-

ary between the two subspecies that is farther South compared to previous work that used neu-

tral markers, and largely corresponds to other works using genomics, but at a coarser scale

[80,81]. In addition, the three sub-clusters that we detected correspond to the Barren-ground

subspecies, Boreal ecotype, and Central Mountain ecotype, with a clear hybrid zone of North-

ern Mountain caribou characterized by assignment to all three sub-clusters. Population struc-

ture analyses that were based only on migration-associated SNPs indicated groupings that

were less discrete, suggesting that at least some of the migration-associated loci may be under

balancing selection and therefore less differentiated between populations, although the matter

is debated in the literature [82]. Consistent with this interpretation, Cavedon et al. [80]

detected signals of balancing selection in this study area’s caribou. Regardless of the discrepan-

cies, our approach is not designed to reassess caribou taxonomy, as this should depend on the

integration of multiple factors, not just genomics [83].
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This study’s Barren-ground caribou exhibit long-distance migrations (one way

mean = 247.61 km; range = 77.96–467.36), as expected in this species that is arguably charac-

terized by “the longest terrestrial migrations and movements around the world” [84]. For

Woodland caribou, we also detect migrations, although their distances are dramatically shorter

(> tenfold). Ultimately, we identify migratory individuals across all studied caribou subspecies

and ecotypes, despite the Woodland subspecies being previously described as largely sedentary

(but see [85]). This study’s collaring of females only was decided by the governing bodies, as

these were considered as a first monitoring priority for conservation. Females are also ideal for

defining seasonal movements in caribou, as they show fidelity to areas used during a fixed calv-

ing period occurring each year. In caribou, also migrate, likely in equal proportion to females

[86]. However, future studies could be conducted to look at the migration patterns and genetic

influences in males in particular.

Consistent with the literature, we detected more sedentary animals and less migratory ani-

mals within the Woodland subspecies, and particularly within the Boreal ecotype [27]. Boreal

individuals also had larger overlap between their summer and winter ranges, indicating a

higher tendency to be sedentary. However, some migratory and sedentary animals were

detected in our study within populations of the Boreal ecotype and Barren-ground subspecies,

respectively. Therefore, our data indicate partial migration (sensu [19]) in populations belong-

ing not only to Mountain caribou (where this population trait was known [24]), but also to the

Barren-ground subspecies and Boreal ecotype. Overall, we detected a large proportion of

migratory individuals across all subspecies and ecotypes and in populations where individuals

are likely exposed to the same environment. Sympatry of migrants and residents suggests that

the difference between the two behaviors could be genetically rather than environmentally

caused. As an alternative explanation, other factors may also influence caribou migration,

including differences in age, experience, and sex (not accounted for here as we only monitored

females), among others. As a result, migration can be obligate (for example, genetically deter-

mined) or facultative within the same population even if individuals all experience the same

environment [3].

Mechanisms of migration: Intrinsic genetic forces and the role of ancestry

Overall, the results of our association analyses indicate that genetic mutations could produce

two opposite phenotypes in caribou: migratory or resident individuals. As explained by Cave-

don et al. [80], the existence of both migratory and resident caribou in sympatry could be pro-

moted by negative frequency-dependent selection, which is a form of balancing selection

allowing the existence of multiple haplotypes and phenotypes within populations (note that

the study relied on pooled samples and could not conduct individual analyses as in this study).

Phenotypical “bimodality” in caribou, as described for example by Cavedon et al. [80], con-

trasts with other migratory species, including other cervids. For instance, elk are behaviorally

plastic and exhibit wide variation in their migratory behavior across their lifetimes [87]. Con-

sistent with bimodality, our study’s SNPs were not associated with continuous migratory pat-

terns, within the migratory form, including distance, timing, and latitudinal shift of migration,

which are under genetic control in other species (see for example [88]).

Our findings suggest the presence of intrinsic genetic drivers of migration and are consis-

tent with recent work by Gurarie et al. 2019 [28] examining caribou migration with GPS loca-

tion data. The authors observed synchrony of animal migratory movement even if individuals

belonged to different populations, suggesting an intrinsic determination. This intrinsic drive

can arise from a response to common cues (i.e. day length), but may also be promoted by

genetic mutations, such as the ones we observed (above). However, in this study we also
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document that a few caribou individuals (5/102) are migrants or residents in different years;

this indicates the existence of some seasonal movement plasticity in the species. These switches

in behavior could be attributed to environmental changes from year to year, to learning, pro-

moted by some genetic traits, or a combination of all the above.

Our results also indicate that the differences between the migratory and sedentary type

could be related to the long-term evolutionary history of caribou, a species that during the last

glaciation evolved into two separate subspecies, north and south of the continental ice-sheet,

respectively [29]. Our population structure analyses indicates a main North-South separation

of caribou, and confirms the presence of two lineages [24,79]. In our study, individual propen-

sity to migrate depended upon the proportion of assignment to the North cluster, as deter-

mined by the Admixture ancestry analysis. Correlation coefficients were significant, but their

values were not substantial. Therefore, our correlations might not indicate a simple cause-to-

effect relationship between ancestry and migration. It is also possible that our correlations

were weakened by uncertainties, including uncertainties in Q value estimates of ancestry, as

well as those in our determinations of migration.

Despite the uncertainties, all our analyses were conducted while statistically controlling for

ecotype differences, therefore indicating ancestry effects detectable in caribou individuals also

belonging to the same ecotype. These results are strongest (i.e. 18% of variance explained)

when we used the seasonal ranges overlap as the variable representing migratory behavior.

Thus, individuals with northern-type DNA and the associated “ancestral” genes could be more

prone to migration than those without. Overall, an ancestral gene-to-behavior association—

that was likely advantageous for tracking seasonal resources in the tundra and taiga (regions

frequented by the northern subspecies during glacial times [70])—is likely retained in some

individuals throughout our study area. After glaciation, caribou recolonized vast areas that

were previously covered by continental ice, also including the mountainous parts of our study

area [24]. Perhaps aided by northern ancestral genes, caribou are presently capable of migrat-

ing either from tundra to taiga areas in the North (as in glacial times too), or from alpine to

forested areas in the mountains.

Conservation implications: Potential extirpation of migrants

As a result of habitat alteration caused by anthropogenic activities (including barriers), dra-

matic declines in populations of migratory ungulates and the disappearance of migratory

behavior are now recognized as a global conservation challenge [89,90], with alarming new

findings for threatened caribou, in particular [31].

Human-caused habitat alterations and climate change are both implicated in caribou decline

[31,91] and, together with the extirpation of some populations, ecological and genetic traits

could also be extirpated in the future. We document that caribou migration and associated

genes are unequally distributed among subspecies, ecotypes, and populations. If, as we report,

migratory behavior is genetically influenced, caribou could be further impacted, possibly by per-

manent loss of the migratory trait in some populations already at low numbers [26,30]. These

results also suggest that the migratory trait, and the set of mutations contributing to the trait

could not be easily re-established when lost in a population. Recent findings confirm that

migration is imperiled in endangered caribou populations [31]. Genetic mutations, especially

those that are beneficial, occur in evolutionary timeframes [92], perhaps incompatible with the

fast decline of caribou. In the face of rapid declines, novel mutations, including those influenc-

ing migration, are unlikely to emerge on time. This loss could perhaps be averted with the main-

tenance of critical seasonal habitats (sensu [93,94]) for caribou within and between seasonal

ranges–a strategy also allowing for long-range movements and migration.
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We believe that our concerns for the loss of migration in caribou are transferable to other

species and systems where there are documented declines, and migration is likewise associated

with genes. The loss of migration can have significant ecological impacts on ecosystems, such

as influencing prey densities and grazing in seasonal ranges, so understanding the mechanisms

underlying migratory behavior in ungulates has become a broader conservation priority

[22,89,95,96]. Our study on the drivers of migration in caribou is therefore applicable to the

management and conservation of wild migratory ungulates in general, as well as their environ-

ments. In other ungulates too the proportion of genetically-enabled migrants in populations

might be declining. As a consequence, fewer and fewer migrants could perform their ecologi-

cal role in the future. Finally, our study reveals that caribou possess a gene package common to

other migratory species. These genes were found to not only be associated with migration, but

also with other ecological, morphological, and behavioral traits of adaptive value in model and

non-model species. Thus, the potential loss of genetic mutations influencing migration may

also result in the loss of other important traits; conversely, preserving these mutations could

maintain a whole suite of traits promoting a species’ survival in the long-term.

Material and methods

Ethics statement

Research was conducted under research permits of Government of British Columbia, Alberta,

Northwest Territories, and Yukon, Parks Canada, University of Calgary, and University of

Montana. Approval was granted by the University of Calgary’s Life & Environmental Sciences

Animal Care Committee (LESACC), ACC Study #AC16-0195.

Samples collection and molecular analyses

Blood and tissue samples from 284 female caribou (note below rationale for pick of sex) were

obtained from monitoring activities across western North America from 2004–2016. Sampled

caribou were from two recognized subspecies and three ecotypes: 60 individuals belonged to

the Barren-ground subspecies (R. t. groenlandicus–also forming its own ecotype) and 224 indi-

viduals belonged to three ecotypes within the Woodland subspecies (R. t. caribou; Boreal,

nindividuals = 96; Northern Mountain, nindividuals = 99; Central Mountain, nindividuals = 29)

(Fig 1). In this study, we examined caribou belonging to three ecotypes (Boreal, Central

Mountain, and Northern Mountain) within the Woodland subspecies (R. t. caribou).

We extracted DNA from samples with the DNeasy Blood and Tissue Kit (Qiagen) following

manufacturers’ protocols and identified high-quality DNA as a high molecular weight band

(>1 Kb) on a 2% agarose gel with a 2-log DNA ladder. We subsequently quantified DNA

using either PicoGreen or Qubit 2.0 fluorometry and standardized it to a final concentration of

5 ng/μL per sample. DNA was digested with the SbfI restriction enzyme to prepare restriction

site associated DNA sequencing (RADseq) libraries, barcoding each individual sample, follow-

ing Ali et al. [97]. Unique barcode tags allowed us to 96 samples into a single genomic library,

without losing track of individual data. The genomic libraries were then sequenced with

paired-end 2x100nt reads on an Illumina HiSeq 2500 at Princeton University’s Lewis-Sigler

Institute for Integrative Genomics core facility (full details in Method A in S1 Text).

RADseq analysis and SNPs finding

Using a custom Perl script, we filtered raw sequencing reads to retain only those that contained

the SbfI cut site, along with a barcode. We further demultiplexed (obtained reads for each indi-

vidual) and filtered reads using the process_radtags and the clone_filter scripts within Stacks
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v2.0 [98]. We retained individuals with a minimum of 500,000 reads [99] and these reads were

then mapped to the reference Bos Taurus genome (UMD3.1- [100]) using Stampy v1.0.20

[101]. Our pick of the Bos Taurus genome was motivated by both its quality and established

used in the literature for cervids (see for example [102]) like caribou. We then used SAMtools
v1.5 to remove reads with low mapping quality (MAPQ < 60) and to obtain files, in BAM for-

mat, for each individual [103]. To discover SNPs, we used the BAM files within Stacks 2.0. We

therefore ran the gstacks and populationsmodules, with the latter implemented twice (see

details on SNPs calls in Results A in S1 Text). In the first implementation, we retrieved only

loci that were genotyped in 90% of individuals and had a minor allele frequency greater than

0.05. Loci obtained with this first run were examined with VCFtools, which was used to calcu-

late the number of SNPs and the total missingness (number of missing SNPs) per individual

[104]. In the second implementation of populations, we used previous filtering options and

additionally we removed individuals with>85% of missingness (i.e. individuals with very high

proportion of missing SNPs) and/or with mean coverage < 3x. Ultimately, we retained 190

individuals (out of 284), which belonged to two recognized subspecies and three ecotypes (Fig

1A): 57 individuals belonged to the Barren-ground subspecies and 133 individuals belonged to

three ecotypes within the Woodland subspecies (Boreal, nindividuals = 34; Northern Mountain,

nindividuals = 76; Central Mountain, nindividuals = 23) (Fig 1A). Source data for all caribou before

and after filtering are provided as S1 Data. Furthermore, we ran populations to retrieve only

the first SNP per locus. We therefore discovered 31,080 SNP loci, which were further filtered

for linkage disequilibrium (referred to as the “29K LD SNPs set”) in Plink v1.9 (flag “—indep-

pairwise 50 5 0.5”–[105]).We finally filtered the LD SNPs set to retain those SNPs in Hardy-

Weinberg Equilibrium (flag “—hwe 0.001” in Plink). The expectation was that this SNP set

contains putatively neutral loci useful for population genetic and demographic analyses, here-

after referred to as the “28K neutral SNP set”. For further analyses with migration, the SNP

datasets were used for this study’s 139 GPS-collared caribou (see below).

Population structure analyses

To visualize the genetic structure of our individuals, we performed a principal component

analysis (PCA) using SmartPCA within Eigenstrat v3.0 [106] for the 28K neutral SNP set. Next,

we evaluated genetic structure using a maximum likelihood approach implemented in Admix-
ture v1.3 with the 5-fold cross-validation flag for K varying from 1 to 22 (number of sampled

caribou herds) to capture the fine population structure of caribou [107]. Assignment of indi-

viduals to specific clusters was obtained following Schweizer et al. [108].

Assessment of migratory behavior in caribou

Data collection and screening. Female caribou were radio-collared by government staff

or contractors of Yukon, British Columbia, Northwest Territories, and Alberta between 2004–

2016, each following their respective government’s standardized permitting, animal care, and

handling procedures. Collars varied with respect to their duration on caribou (minimum = 2

months, maximum = 6 years) and were equipped with a fix interval (e.g. number of locations

per day) ranging from hourly to every 7 days. We therefore filtered and standardized telemetry

data for each animal to obtain a maximum number of daily locations equal to one. After

screening procedures, the data set contained 75,223 locations from 139 unique individuals: 54

individuals belonged to the Barren-ground subspecies, and 85 individuals belonged to two

ecotypes within the Woodland subspecies (Boreal, nindividuals = 18; Northern Mountain, nindivi-

duals = 67).
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Determining migration with overlap analysis of seasonal ranges. We excluded caribou

individuals with<1 year of monitoring. We then calculated an index of overlap (IO) between

winter and summer ranges frequented by individual caribou, with IO ranging from 0 to 1

(higher and lower values indicating resident and migratory behavior, respectively).

To calculate IO, we defined summer (1 July—15 September) and winter (1 December- 30

April) seasons following [24] and we used only individuals with at least 30 locations per season

(n = 116) [109]. For each animal we estimated seasonal utilization distributions (UD) using

the kernelUD function (using reference bandwidth) within the adehabitHR package [110] in R

version 3.5. We then derived range contour polygons from the 95% fixed-kernel isopleth.

Finally, we determined the IO between summer and winter polygons for each animal following

[24]:

IO ¼ ½2 A12=ðA1 þ A2Þ�

Where A12 is the area of overlap (km2) between the summer and winter 95% isopleths, and A1

and A2 are the areas (km2) of the summer and winter 95% isopleths for the animal, respec-

tively. For animals with multiple years of data, we averaged IO across years.

Individual classification as either migrant or resident. We classified each caribou as

either migratory or sedentary by conducting Net Square Displacement (NSD) analyses with

the R packageMigrateR [111], which examine seasonal displacement of individuals by fitting

trajectory lines (sequences of GPS points) to annual telemetry locations. The best fitting trajec-

tory line was selected, byMigrateR, with the Akaike Information Criteria. To improve model

fitting, we used the Relative Net Squared Displacement option (rNSD), which allows one to

manually set the parameter ρ. This parameter (ρ) defines the minimum number of days that

an animal must spend in a second range in order to be considered migratory. We set ρ equal

to 30 (therefore, a caribou needed to spent at least 30 days in a second range to be considered

migratory) following recommendations in recent publications reporting NSD analyses applied

to ungulates [112,113]. We only included caribou with at least one continuous year of data

(n = 102 individuals) and when the same individual had multiple years of data, we used it in

subsequent analyses only when consistently classified as either migratory or sedentary across

years (n = 83 and n = 14 individuals, respectively). Individual animals may not be limited to

one seasonal movement behavior throughout their lifetime. Instead, they may demonstrate

more than one movement behavior by switching behaviors between years, exhibiting behav-

ioral plasticity (though this is undocumented for caribou). In this study, plasticity in seasonal

movements was detected in only a few individuals (n = 5), and these were not used for analyses

that were naturally designed to pick a signal of association with genetic traits that are fixed for

life (below). These five individuals had a mean of 2.8 years of data (range 2–4), and during

these periods the mean number of switches per individual was 1.6 (range 1–4), which con-

trasted to the lack of any switches in the additional 97 caribou that we also analysed (1.7 years

of data per individual, range 1–4).

Variation in migratory patterns (distance, timing, and latitudinal shift). Also with the

R packageMigrateR, we selected individuals consistently classified as migratory (see above),

and obtained the parameters δ and t representing the distance separating seasonal ranges and

the start date of migration, respectively. Units of migration timing were calendar dates (e.g. 1

January 2017), which we subsequently standardized to numeric dates from a starting day (day

1 = 1 January). In this way, for example, a migration starting on calendar day April 10th was

converted to the numeric date 100 (i.e. 100 days after day one). Whenever the same animal

had multiple years of data, we averaged numeric dates and the distance of migration across

years.
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In addition, for each animal, we calculated centroids of winter and summer ranges and cal-

culated the Euclidean distances between these two points. Finally, we used the geographic

coordinates of the two centroids to calculate differences in latitudes between winter and sum-

mer ranges (latitudinal shift).

Association study between SNPs and migratory behavior

We ran a univariate mixed model with the software package Gemma [114] to examine the

dependence (or association) of migratory behavior upon each single SNP. Such associations

were tested with each of the five measurements of migratory behavior described above: (1)

index of seasonal ranges overlap, (2) NSD classification of animals as migratory or resident,

and (3) distance, (4) departure timing, and (5) latitudinal shift of migration. RADseq data,

with coverage equal to or lower than that obtained in this study (see above), has been shown to

successfully detect trait associations [115]. Following guidelines [114], we accounted for popu-

lation stratification. We therefore first used the 29K LD SNP set to calculate the relatedness

matrix of caribou individuals, and then we incorporated the matrix, as a covariate, in the

mixed model. We used Wald’s test to determine the significance of our analyses, where a SNP

was considered associated with migratory behavior only when the Bonferroni adjusted p value

was below 0.05. Ultimately, we calculated the proportion of variance in phenotype (i.e. migra-

tory behavior) explained (PVE) by a given associated SNP as described in Shim et al. [116]:

PVE ¼
2b

2
�MAF � ð1 � MAFÞ

2b
2
�MAF � ð1 � MAFÞ þ ðseðbÞÞ2 � 2N �MAF � ð1 � MAFÞ

Where β is the regression coefficient obtained with Gemma analyses (above), se is the standard

error of β,MAF is the minor allele frequency, and N is the sample size. When we calculated

PVE values for all SNPs associated to NSD’s classification as migratory (while in other studies

only some are reported; [117]), a theoretical total variance >100% was explained; we therefore

provided values for the relative contribution of phenotypic variance (PVE) explained by each

of the associated SNPs, imposing a total sum of 100%.

We annotated all SNPs as genic (intron or exon), as within a promoter (i.e. we considered any

gene within 2 Kb), or as intergenic using an in-house python script [118]. For genic SNPs, we

inferred gene functions of those associated to migratory behavior using Ensembl BioMart [119].

Predicting migration dependent upon ancestry

We tested the probability that an individual caribou was migratory dependent upon its ances-

try by conducting regression analyses. Our independent variable was the proportion of ances-

try of a given individual (a Q value of its belonging to a specify cluster, one at a time) obtained

with the Admixture program (above); for our dependent variable, we used either IO (seasonal

ranges overlap) or NSD’s classification of migratory vs. resident behavior. For the first analysis,

we used a linear regression, since IO was a continuous variable. For the second analysis, we

used logistic regression with an output of either 1 or 0 (migratory or sedentary). Additionally,

we tested migration depending upon Q while also statistically controlling for ecotype. For

these additional analyses, we used the glmer function within the lme4 package in R, where eco-

types were used as random effects [120].

Supporting information
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Admixture program. Fig C. Manhattan plots of SNPs associated to migratory behavior. Fig D.
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Table A. Metrixes of migratory behavior in caribou ecotypes. Table B. SNPs associated to
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89. Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, et al. Moving in the

Anthropocene: Global reductions in terrestrial mammalian movements. Science. 2018; 359: 466–469.

Available from: https://www.science.org/doi/10.1126/science.aam9712 PMID: 29371471
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