72 research outputs found

    Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

    Get PDF
    The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al

    Addressing gaps in care of people with conditions affecting sex development and maturation

    Get PDF
    Differences of sex development are conditions with discrepancies between chromosomal, gonadal and phenotypic sex. In congenital hypogonadotropic hypogonadism, a lack of gonadotropin activity results primarily in the absence of pubertal development with prenatal sex development being (almost) unaffected in most patients. To expedite progress in the care of people affected by differences of sex development and congenital hypogonadotropic hypogonadism, the European Union has funded a number of scientific networks. Two Actions of the Cooperation of Science and Technology (COST) programmes - DSDnet (BM1303) and GnRH Network (BM1105) - provided the framework for ground-breaking research and allowed the development of position papers on diagnostic procedures and special laboratory analyses as well as clinical management. Both Actions developed educational programmes to increase expertise and promote interest in this area of science and medicine. In this Perspective article, we discuss the success of the COST Actions DSDnet and GnRH Network and the European Reference Network for Rare Endocrine Conditions (Endo-ERN), and provide recommendations for future research

    Role of PACAP and VIP Signalling in Regulation of Chondrogenesis and Osteogenesis

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are multifunctional proteins that can regulate diverse physiological processes. These are also regarded as neurotrophic and anti-inflammatory substances in the CNS, and PACAP is reported to prevent harmful effects of oxidative stress. In the last decade more and more data accumulated on the similar function of PACAP in various tissues, but its cartilage- and bone-related presence and functions have not been widely investigated yet. In this summary we plan to verify the presence and function of PACAP and VIP signalling tool kit during cartilage differentiation and bone formation. We give evidence about the protective function of PACAP in cartilage regeneration with oxidative or mechanically stress and also with the modulation of PACAP signalling in vitro in osteogenic cells. Our observations imply the therapeutic perspective that PACAP might be applicable as a natural agent exerting protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage

    Hybrid sources control for electric drives traction applications

    No full text
    International audienceA judicious study with regard to a more efficient energy management on board of an electric vehicle (EV) is discussed in this paper. This analysis follows the present trend in the field, knowing that the major drawback of the EV is the autonomy problem. Thus, by using a hybrid energy source (formed by ultracapacitors and battery) and with a proper current control (of polynomial type) one can get the proper energy management which will increase the lifetime of the battery. Through numerical simulations and tests at a reduced scale, the authors present a successfully energy management with regard to the DC/DC - battery and DC/AC - electrical machine subsystems operation, used on board of an EV

    Molecular silencing of twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: Implication of FGFR2 signaling

    No full text
     The capacity of mesenchymal stem cells (MSCs) to differentiate into functional osteoblasts is tightly controlled by transcription factors that trigger osteoblast commitment and differentiation. The role of Twist1, a basic helix-loop-helix (bHLH) transcription factor, in osteogenic differentiation of MSCs remains unclear Het e we investigated the role of Twist1 in the osteogenic differentiation program of murine C3H10T1/2 mesenchymal cells We showed that molecular silencing of Twist1 using short hairpin RNA (shRNA) expression moderately increased C3H10T1/2 cell proliferation and had no effect on cell survival In contrast, Twist1 silencing enhanced osteoblast gene expression and matrix mineralization in vitro Biochemical analyses revealed that Twist1 silencing increased the expression of FGFR2 protein level, which was reduced by a mutant Runx2 Consistent with this finding, Twist1 silencing increased ERK1/2 and PI3K signaling Moreover, molecular or pharmacological inhibition of FGFR2 or of ERK1/2 and PI3K signaling partly abolished the increased osteoblast gene expression induced by Twist1 silencing in C3H10T1/2 cells These results reveal that Twist1 silencing upregulates osteoblast differentiation of murine mesenchymal cells in part via activation of FGFR2 expression and downstream signaling pathways, which provides novel insights into the molecular signals by which this transcription factor regulates the osteogenic differentiation program in MSCs. J Cell Biochem. 110 1147-1154, 2010 (C) 2010 Wiley-Liss, In

    Hybrid sources control for electric drives traction applications

    No full text
    International audienceA judicious study with regard to a more efficient energy management on board of an electric vehicle (EV) is discussed in this paper. This analysis follows the present trend in the field, knowing that the major drawback of the EV is the autonomy problem. Thus, by using a hybrid energy source (formed by ultracapacitors and battery) and with a proper current control (of polynomial type) one can get the proper energy management which will increase the lifetime of the battery. Through numerical simulations and tests at a reduced scale, the authors present a successfully energy management with regard to the DC/DC - battery and DC/AC - electrical machine subsystems operation, used on board of an EV

    Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells

    No full text
     The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling. J. Cell. Physiol. 224: 509-515, 2010. (C) 2010 Wiley-Liss, Inc
    • …
    corecore