256 research outputs found

    Classification of mixed three-qubit states

    Get PDF
    We introduce a classification of mixed three-qubit states, in which we define the classes of separable, biseparable, W- and GHZ-states. These classes are successively embedded into each other. We show that contrary to pure W-type states, the mixed W-class is not of measure zero. We construct witness operators that detect the class of a mixed state. We discuss the conjecture that all entangled states with positive partial transpose (PPTES) belong to the W-class. Finally, we present a new family of PPTES "edge" states with maximal ranks.Comment: 4 pages, 1 figur

    Vacuum Fluctuations, Geometric Modular Action and Relativistic Quantum Information Theory

    Full text link
    A summary of some lines of ideas leading to model-independent frameworks of relativistic quantum field theory is given. It is followed by a discussion of the Reeh-Schlieder theorem and geometric modular action of Tomita-Takesaki modular objects associated with the quantum field vacuum state and certain algebras of observables. The distillability concept, which is significant in specifying useful entanglement in quantum information theory, is discussed within the setting of general relativistic quantum field theory.Comment: 26 pages. Contribution for the Proceedings of a Conference on Special Relativity held at Potsdam, 200

    Cytoskeletal Control of Antigen-Dependent T Cell Activation

    Get PDF
    Cytoskeletal actin dynamics is essential for T cell activation. Here, we show evidence that the binding kinetics of the antigen engaging the T cell receptor influences the nanoscale actin organization and mechanics of the immune synapse. Using an engineered T cell system expressing a specific T cell receptor and stimulated by a range of antigens, we found that the peak force experienced by the T cell receptor during activation was independent of the unbinding kinetics of the stimulating antigen. Conversely, quantification of the actin retrograde flow velocity at the synapse revealed a striking dependence on the antigen unbinding kinetics. These findings suggest that the dynamics of the actin cytoskeleton actively adjusted to normalize the force experienced by the T cell receptor in an antigen-specific manner. Consequently, tuning actin dynamics in response to antigen kinetics may thus be a mechanism that allows T cells to adjust the lengthscale and timescale of T cell receptor signaling

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Bayesian inference of accurate population sizes and FRET efficiencies from single diffusing biomolecules.

    Get PDF
    It is of significant biophysical interest to obtain accurate intramolecular distance information and population sizes from single-molecule Förster resonance energy transfer (smFRET) data obtained from biomolecules in solution. Experimental methods of increasing cost and complexity are being developed to improve the accuracy and precision of data collection. However, the analysis of smFRET data sets currently relies on simplistic, and often arbitrary methods, for the selection and denoising of fluorescent bursts. Although these methods are satisfactory for the analysis of simple, low-noise systems with intermediate FRET efficiencies, they display systematic inaccuracies when applied to more complex systems. We have developed an inference method for the analysis of smFRET data from solution studies based on rigorous model-based Bayesian techniques. We implement a Monte Carlo Markov chain (MCMC) based algorithm that simultaneously estimates population sizes and intramolecular distance information directly from a raw smFRET data set, with no intermediate event selection and denoising steps. Here, we present both our parametric model of the smFRET process and the algorithm developed for data analysis. We test the algorithm using a combination of simulated data sets and data from dual-labeled DNA molecules. We demonstrate that our model-based method systematically outperforms threshold-based techniques in accurately inferring both population sizes and intramolecular distances.This is the final published version. It's also available from ACS in Analytical Chemistry: http://pubs.acs.org/doi/pdf/10.1021/ac501188r

    Identification of stable and metastable adsorption sites of K adsorbed on Al(111)

    Get PDF
    The adsorption of potassium on Al(111) at 90 K and at 300 K has been investigated by low-energy electron diffraction (LEED). Although a (√3 × √3 )R30° structure is formed at each temperature, a detailed LEED analysis has revealed that the adsorbate positions are quite different and unusual in each case. At 90 K the adatoms occupy on-top sites and at 300 K they occupy substitutional sites. An irreversible phase transformation from the former to the latter structure occurs on warming to 300 K. These results are discussed in the light of recent density-functional-theory calculations

    Possible mineral contributions to the diet and health of wild chimpanzees in three East African forests

    Get PDF
    For financial support, the authors acknowledge the Mohamed bin Zayed Species Conservation Fund grant numbers 0925272, 10251055, 11252562, 12254904, the Royal Zoological Society of Scotland, the Leverhulme Trust grant number ECF‐2013‐507, and the Boise Fund.We present new data on the ingestion of minerals from termite mound soil by East African chimpanzees (Pan troglodytes schweinfurthii) living in the Budongo Forest Reserve, Uganda, the Gombe National Park and the Mahale Mountains National Park, Tanzania. Termite mound soil is here shown to be a rich source of minerals, containing high concentrations of iron and aluminum. Termite mound soil is not, however, a source of sodium. The concentrations of iron and aluminum are the highest yet found in any of the mineral sources consumed. Levels of manganese and copper, though not so high as for iron and aluminum, are also higher than in other dietary sources. We focus on the contribution of termite mound soil to other known sources of mineral elements consumed by these apes, and compare the mineral content of termite soil with that of control forest soil, decaying wood, clay, and the normal plant‐based chimpanzee diet at Budongo. Samples obtained from Mahale Mountains National Park and Gombe National Park, both in Tanzania, show similar mineral distribution across sources. We suggest three distinct but related mechanisms by which minerals may come to be concentrated in the above‐mentioned sources, serving as potentially important sources of essential minerals in the chimpanzee diet.PostprintPeer reviewe

    The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress

    Get PDF
    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress
    corecore