4,808 research outputs found

    Ultrasonic attenuation as an indicator of fatigue life of graphite/epoxy fiber composite

    Get PDF
    The narrow band ultrasonic longitudinal wave velocity and attenuation were measured as a function of the transfiber compression-compression fatigue of unidirectional graphite/epoxy composites. No change in velocity was detected at any point in fatigue life. For specimens fatigued at 80% of static strength, there was generally a 5% to 10% increase in attenuation, however, this increase does not appear to be a satisfactory indicator of fatigue life. On the other hand, there appears to be a correlation between initial attenuation (measured prior to cycling) and cycles to fracture. Initial attenuation as measured at 1.5 MHz and 2.0 MHz appears to be a good indicator of relative fatigue life

    Density functional study of the adsorption of K on the Ag(111) surface

    Full text link
    Full-potential gradient corrected density functional calculations of the adsorption of potassium on the Ag(111) surface have been performed. The considered structures are Ag(111) (root 3 x root 3) R30degree-K and Ag(111) (2 x 2)-K. For the lower coverage, fcc, hcp and bridge site; and for the higher coverage all considered sites are practically degenerate. Substrate rumpling is most important for the top adsorption site. The bond length is found to be nearly identical for the two coverages, in agreement with recent experiments. Results from Mulliken populations, bond lengths, core level shifts and work functions consistently indicate a small charge transfer from the potassium atom to the substrate, which is slightly larger for the lower coverage.Comment: to appear in Phys Rev

    The Child Custody Provisions of the Illinois Marriage and Dissolution of Marriage Act

    Get PDF

    The Child Custody Provisions of the Illinois Marriage and Dissolution of Marriage Act

    Get PDF

    Ground state properties of heavy alkali halides

    Full text link
    We extend previous work on alkali halides by calculations for the heavy-atom species RbF, RbCl, LiBr, NaBr, KBr, RbBr, LiI, NaI, KI, and RbI. Relativistic effects are included by means of energy-consistent pseudopotentials, correlations are treated at the coupled-cluster level. A striking deficiency of the Hartree-Fock approach are lattice constants deviating by up to 7.5 % from experimental values which is reduced to a maximum error of 2.4 % by taking into account electron correlation. Besides, we provide ab-initio data for in-crystal polarizabilities and van der Waals coefficients.Comment: accepted by Phys. Rev.

    Lissajous curves and semiclassical theory: The two-dimensional harmonic oscillator

    Get PDF
    The semiclassical treatment of the two-dimensional harmonic oscillator provides an instructive example of the relation between classical motion and the quantum mechanical energy spectrum. We extend previous work on the anisotropic oscillator with incommensurate frequencies and the isotropic oscillator to the case with commensurate frequencies for which the Lissajous curves appear as classical periodic orbits. Because of the three different scenarios depending on the ratio of its frequencies, the two-dimensional harmonic oscillator offers a unique way to explicitly analyze the role of symmetries in classical and quantum mechanics.Comment: 9 pages, 3 figures; to appear in Am. J. Phy

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.

    Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    Get PDF
    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented

    Development of a Computerized App Based on Fitness Norms of University Students

    Get PDF
    Please view abstract in the attached PDF fil
    • …
    corecore