443 research outputs found
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
The implementation of a resistive-wall extension to the non-linear MHD-code
JOREK via a coupling to the vacuum-field code STARWALL is presented along with
first applications and benchmark results. Also, non-linear saturation in the
presence of a resistive wall is demonstrated. After completion of the ongoing
verification process, this code extension will allow to perform non-linear
simulations of MHD instabilities in the presence of three-dimensional resistive
walls with holes for limited and X-point plasmas.Comment: Contribution for "Theory Of Fusion Plasmas, Joint Varenna - Lausanne
International Workshop, Villa Monastero, Varenna, Italy (27.-31.8.2012)",
accepted for publication in Journal of Physics Conference Serie
A Component-oriented Framework for Autonomous Agents
The design of a complex system warrants a compositional methodology, i.e.,
composing simple components to obtain a larger system that exhibits their
collective behavior in a meaningful way. We propose an automaton-based paradigm
for compositional design of such systems where an action is accompanied by one
or more preferences. At run-time, these preferences provide a natural fallback
mechanism for the component, while at design-time they can be used to reason
about the behavior of the component in an uncertain physical world. Using
structures that tell us how to compose preferences and actions, we can compose
formal representations of individual components or agents to obtain a
representation of the composed system. We extend Linear Temporal Logic with two
unary connectives that reflect the compositional structure of the actions, and
show how it can be used to diagnose undesired behavior by tracing the
falsification of a specification back to one or more culpable components
Exploiting the Hierarchical Structure of Rule-Based Specifications for Decision Planning
Rule-based specifications have been very successful as a declarative approach in many domains, due to the handy yet solid foundations offered by rule-based machineries like term and graph rewriting. Realistic problems, however, call for suitable techniques to guarantee scalability. For instance, many domains exhibit a hierarchical structure that can be exploited conveniently. This is particularly evident for composition associations of models. We propose an explicit representation of such structured models and a methodology that exploits it for the description and analysis of model- and rule-based systems. The approach is presented in the framework of rewriting logic and its efficient implementation in the rewrite engine Maude and is illustrated with a case study.
Abstract Constraint Data Types
Martin Wirsing is one of the earliest contributors to the area of Algebraic Specification (e.g., [2]), which he explored in a variety of domains over many years. Throughout his career, he has also inspired countless researchers in related areas. This paper is inspired by one of the domains that he explored thirty years or so after his first contributions when leading the FET Integrated Project SENSORIA [14]: the use of constraint systems to deal with non-functional requirements and preferences [13,8]. Following in his footsteps, we provide an extension of the traditional notion of algebraic data type specification to encompass soft-constraints as formalised in [1]. Finally, we relate this extension with institutions [6] and recent work on graded consequence in institutions [3].Peer ReviewedPostprint (author’s final draft
Self-similar chain conformations in polymer gels
We use molecular dynamics simulations to study the swelling of randomly
end-cross-linked polymer networks in good solvent conditions. We find that the
equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand
lengths N_s exceeding the melt entanglement length N_e. The internal structure
of the network strands in the swollen state is characterized by a new exponent
nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which
predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory
argument for a self-similar structure of mutually interpenetrating network
strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner
theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand
length.Comment: 4 pages, RevTex, 3 Figure
Differential Hoare Logics and Refinement Calculi for Hybrid Systems with Isabelle/HOL
We present simple new Hoare logics and refinement calculi for hybrid systems in the style of differential dynamic logic. (Refinement) Kleene algebra with tests is used for reasoning about the program structure and generating verification conditions at this level. Lenses capture hybrid program stores in a generic algebraic way. The approach has been formalised with the Isabelle/HOL proof assistant. A number of examples explains the workflow with the resulting verification components
Разработка высокопроизводительного устройства размагничивания длинномерных изделий.
Работа посвящена разработке устройства размагничивания, реализующее метод, основанный на использовании постоянного магнитного поля, корректируемого по измеряемым в процессе размагничивания начальной и остаточной намагниченностям, является наиболее приемлемым при поточном контроле изделий, либо конвейерном размагничивании, из-за высокого быстродействия, низкого энергопотребления и достаточно высокого качества размагничивания. После проведения размагничивания остаточная намагниченность находится в рамках не препятствующих проведению сварки (менее 0,01 Тл), и не вызывает налипания ферромагнитных частиц более 0,1 мм.The work is devoted to the development of a demagnetization device that implements a method based on the use of a constant magnetic field, corrected for the initial and residual magnetizations measured during demagnetization, is most acceptable for in-line inspection of products or pipeline demagnetization, because of high speed, low power consumption and high enough quality of demagnetization. After the demagnetization is carried out, the residual magnetization is within the limits of not impeding the conduct of welding (less than 0.01 Tl), and does not cause the sticking of ferromagnetic particles more than 0.1 mm
- …