1,841 research outputs found

    Extraordinary Sex Ratios: Cultural Effects on Ecological Consequences

    Get PDF
    We model sex-structured population dynamics to analyze pairwise competition between groups differing both genetically and culturally. A sex-ratio allele is expressed in the heterogametic sex only, so that assumptions of Fisher's analysis do not apply. Sex-ratio evolution drives cultural evolution of a group-associated trait governing mortality in the homogametic sex. The two-sex dynamics under resource limitation induces a strong Allee effect that depends on both sex ratio and cultural trait values. We describe the resulting threshold, separating extinction from positive growth, as a function of female and male densities. When initial conditions avoid extinction due to the Allee effect, different sex ratios cannot coexist; in our model, greater female allocation always invades and excludes a lesser allocation. But the culturally transmitted trait interacts with the sex ratio to determine the ecological consequences of successful invasion. The invading female allocation may permit population persistence at self-regulated equilibrium. For this case, the resident culture may be excluded, or may coexist with the invader culture. That is, a single sex-ratio allele in females and a cultural dimorphism in male mortality can persist; a low-mortality resident trait is maintained by father-to-son cultural transmission. Otherwise, the successfully invading female allocation excludes the resident allele and culture, and then drives the population to extinction via a shortage of males. Finally, we show that the results obtained under homogeneous mixing hold, with caveats, in a spatially explicit model with local mating and diffusive dispersal in both sexes.Comment: final version, reflecting changes in response to referees' comment

    Improved policy representation and policy search for proactive content caching in wireless networks

    Get PDF
    We study the problem of proactively pushing contents into a finite capacity cache memory of a user equipment in order to reduce the long-term average energy consumption in a wireless network. We consider an online social network (OSN) framework, in which new contents are generated over time and each content remains relevant to the user for a random time period, called the lifetime of the content. The user accesses the OSN through a wireless network at random time instants to download and consume all the relevant contents. Downloading contents has an energy cost that depends on the channel state and the number of downloaded contents. Our aim is to reduce the long-term average energy consumption by proactively caching contents at favorable channel conditions. In previous work, it was shown that the optimal caching policy is infeasible to compute (even with the complete knowledge of a stochastic model describing the system), and a simple family of threshold policies was introduced and optimised using the finite difference method. In this paper we improve upon both components of this approach: we use linear function approximation (LFA) to better approximate the considered family of caching policies, and apply the REINFORCE algorithm to optimise its parameters. Numerical simulations show that the new approach provides reduction in both the average energy cost and the running time for policy optimisation

    Description of a Cretaceous amber fossil putatively of the tribe Coprophilini (Coleoptera, Staphylinidae, Oxytelinae)

    Get PDF
    An unusual and well-preserved fossil staphylinid is described and figured from a single specimen in Upper Cretaceous Burmese amber. Gollandia planata gen. et sp. n. is tentatively placed in the extant oxyteline tribe Coprophilini, although it lacks a few characteristic features of present-day members of the group, likely indicating it to be either a stem group of the tribe or prove to be distinct pending future discoveries. The discovery of this genus suggests that early oxytelines were more morphologically diverse during the Cretaceous and their evolutionary history was more complicated than previously documented. Tribal placement as regards fossil oxyteline taxa is discussed

    Bostonia: The Boston University Alumni Magazine. Volume 33

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Controlled Irradiative Formation of Penitentes

    Full text link
    Spike-shaped structures are produced by light-driven ablation in very different contexts. Penitentes 1-4 m high are common on Andean glaciers, where their formation changes glacier dynamics and hydrology. Laser ablation can produce cones 10-100 microns high with a variety of proposed applications in materials science. We report the first laboratory generation of centimeter-scale snow and ice penitentes. Systematically varying conditions allows identification of the essential parameters controlling the formation of ablation structures. We demonstrate that penitente initiation and coarsening requires cold temperatures, so that ablation leads to sublimation rather than melting. Once penitentes have formed, further growth of height can occur by melting. The penitentes intially appear as small structures (3 mm high) and grow by coarsening to 1-5 cm high. Our results are an important step towards understanding and controlling ablation morphologies.Comment: Accepted for publication in Physical Review Letter

    Kinetics and thermochemistry of the reaction of 3-methylpropargyl radical with molecular oxygen

    Get PDF
    We have measured the kinetics and thermochemistry of the reaction of 3-methylpropargyl radical (but-2-yn-1-yl) with molecular oxygen over temperature (223-681 K) and bath gas density (1.2 - 15.0 x 10(16)cm(-3)) ranges employing photoionization mass-spectrometry. At low temperatures (223-304 K), the reaction proceeds overwhelmingly by a simple addition reaction to the -CH2 end of the radical, and the measured CH3CCCH2 center dot+O-2 reaction rate coefficient shows negative temperature dependence and depends on bath gas density. At intermediate temperatures (340-395 K), the addition reaction equilibrates and the equilibrium constant was determined at different temperatures. At high temperatures (465-681 K), the kinetics is governed by O-2 addition to the third carbon atom of the radical, and rate coefficient measurements were again possible. The high temperature CH3CCCH2 center dot +O(2 )rate coefficient is much smaller than at low T, shows positive temperature dependence, and is independent of bath gas density. In the intermediate and high temperature ranges, we observe a formation signal for ketene (ethenone). The reaction was further investigated by combining the experimental results with quantum chemical calculations and master equation modeling. By making small adjustments (2 - 3 kJ mol(-1)) to the energies of two key transition states, the model reproduces the experimental results within uncertainties. The experimentally constrained master equation model was used to simulate the CH3CCCH2 center dot+ O-2 reaction system at temperatures and pressures relevant to combustion. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.Peer reviewe

    Kinetics and thermochemistry of the reaction of 1-methylpropargyl radicals with oxygen molecules : Experiments and computations

    Get PDF
    We have used laser-photolysis/photoionization mass spectrometry to measure the kinetics of the reaction of 1-methylpropargyl (but-3-yn-2-yl, CH C=CH-CH3) radicals with oxygen molecules as a function of temperature (T = 200 - 685 K) and bath gas density (1.2 - 15 x 10(16) cm(-3)). The low temperature (TPeer reviewe

    Anisotropic low field behavior and the observation of flux jumps in CeCoIn5

    Full text link
    The magnetic behavior of the heavy fermion superconductor CeCoIn5 has been investigated. The low field magnetization data show flux jumps in the mixed state of the superconducting phase in a restricted range of temperature. These flux jumps begin to disappear below 1.7 K, and are completely absent at 1.5 K. The magnetization loops are asymmetric, suggesting that surface and geometrical factors dominate the pinning in this system. The lower critical field (Hc1), obtained from the magnetization data, shows a linear temperature dependence and is anisotropic. The calculated penetration depth is also anisotropic, which is consistent with the observation of an anisotropic superconducting gap in CeCoIn5. The critical currents, determined from the high field isothermal magnetization loops, are comparatively low (around 4000 A/cm2 at 1.6 K and 5 kOe).Comment: 4 pages 3 figure
    • …
    corecore