77 research outputs found

    Double-orifice mitral valve and an associated malformation: secundum atrial septal defect

    Get PDF
    The authors report a case of double-orifice mitral valve (DOMV) which showed mitral stenosis and mild insufficiency. An associated anomaly was secundum atrial septal defect. DOMV is an unusual congenital heart defect. The occurrence of this anomaly with or without secundum atrial septal defect is very rare. More often it is associated with other congenital malformations arising from atrioventricular canal defects. There may be no haemodynamic consequences but mitral insufficiency and/or stenosis may complicate this malformation. Treatment can be summarised as abstention, surgical repair or valve replacement

    Toll-like receptor 9 and the inflammatory response to surgical trauma and cardiopulmonary bypass

    Get PDF
    Objectives Cardiac surgery can lead to post-operative end-organ complications secondary to activation of systemic inflammatory response. We hypothesize that surgical trauma or cardiopulmonary bypass (CPB) may initiate systemic inflammatory response via release of mitochondrial DNA (mtDNA) signaling Toll-like receptor 9 (TLR9) and interleukin-6 production (IL-6). Materials and methods The role of TLR9 in systemic inflammatory response in cardiac surgery was studied using a murine model of sternotomy and a porcine model of sternotomy and CPB. mtDNA and IL-6 were measured with and without TLR9-antagonist treatment. To study ischemia-reperfusion injury, we utilized an ex-vivo porcine kidney model. Results In the rodent model (n = 15), circulating mtDNA increased 19-fold (19.29 ± 3.31, p < 0.001) and plasma IL-6 levels increased 59-fold (59.06 ± 14.98) at 1-min post-sternotomy compared to pre-sternotomy. In the murine model (n = 11), administration of TLR-9 antagonists lowered IL-6 expression post-sternotomy when compared to controls (59.06 ± 14.98 vs. 5.25 ± 1.08) indicating that TLR-9 is a positive regulator of IL-6 after sternotomy. Using porcine models (n = 10), a significant increase in circulating mtDNA was observed after CPB (Fold change 29.9 ± 4.8, p = 0.005) and along with IL-6 following renal ischaemia-reperfusion. Addition of the antioxidant sulforaphane reduced circulating mtDNA when compared to controls (FC 7.36 ± 0.61 vs. 32.0 ± 4.17 at 60 min post-CPB). Conclusion CPB, surgical trauma and ischemic perfusion injury trigger the release of circulating mtDNA that activates TLR-9, in turn stimulating a release of IL-6. Therefore, TLR-9 antagonists may attenuate this response and may provide a future therapeutic target whereby the systemic inflammatory response to cardiac surgery may be manipulated to improve clinical outcomes

    Chapter 3: Pathophysiology

    Get PDF
    The hallmark pathophysiologic feature of dilated cardiomyopathy is systolic dysfunction. Several pathogenetic mechanisms appear to be operative. These include increased hemodynamic overload, ventricular remodeling, excessive neurohumoral stimulation, abnormal myocyte calcium cycling, excessive or inadequate proliferation of the extracellular matrix, accelerated apoptosis, and genetic mutations. Although beneficial in the early stages of heart failure, these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Genetic causes account for 30\u201340% of DCM and involve genes that encode a heterogeneous group of molecules that participate in force generation, force transmission, sarcomere integrity, cytoskeletal and nuclear architecture, electrolyte homeostasis, mitochondrial function, and transcription. Additional research will improve our understanding of the complex and longitudinal molecular changes that lead from gene mutation to clinical expressio

    Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pandemic <it>Vibrio parahaemolyticus </it>has undergone rapid changes in both K- and O-antigens, making detection of outbreaks more difficult. In order to understand these rapid changes, the genetic regions encoding these antigens must be examined. In <it>Vibrio cholerae </it>and <it>Vibrio vulnificus</it>, both O-antigen and capsular polysaccharides are encoded in a single region on the large chromosome; a similar arrangement in pandemic <it>V. parahaemolyticus </it>would help explain the rapid serotype changes. However, previous reports on "capsule" genes are controversial. Therefore, we set out to clarify and characterize these regions in pandemic <it>V. parahaemolyticus </it>O3:K6 by gene deletion using a chitin based transformation strategy.</p> <p>Results</p> <p>We generated different deletion mutants of putative polysaccharide genes and examined the mutants by immuno-blots with O and K specific antisera. Our results showed that O- and K-antigen genes are separated in <it>V. parahaemolyticus </it>O3:K6; the region encoding both O-antigen and capsule biosynthesis in other vibrios, i.e. genes between <it>gmhD </it>and <it>rjg</it>, determines the K6-antigen but not the O3-antigen in <it>V. parahaemolyticus</it>. The previously identified "capsule genes" on the smaller chromosome were related to exopolysaccharide synthesis, not K-antigen.</p> <p>Conclusion</p> <p>Understanding of the genetic basis of O- and K-antigens is critical to understanding the rapid changes in these polysaccharides seen in pandemic <it>V. parahaemolyticus. </it>This report confirms the genetic location of K-antigen synthesis in <it>V. parahaemolyticus </it>O3:K6 allowing us to focus future studies of the evolution of serotypes to this region.</p

    Cardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition

    Get PDF
    Progenitor cell therapy is emerging as a novel treatment for heart failure. However the molecular mechanisms regulating the generation of cardiac progenitor cells is not fully understood. We hypothesized that cardiac progenitor cells are generated from cardiac explant via a process similar to epithelial to mesenchymal transition (EMT).Explant-derived cells were generated from partially digested atrial tissue. After 21 days in culture, c-Kit+ cells were isolated from cell outgrowth. The majority of explant-originated c-Kit+ cells expressed the epicardial marker Wt1. Cardiac cell outgrowth exhibits a temporal up-regulation of EMT-markers. Notch stimulation augmented, while Notch inhibition suppressed, mesenchymal transition in both c-Kit+ and c-Kit- cells. In c-Kit+ cells, Notch stimulation reduced, while Notch inhibition up-regulated pluripotency marker expressions such as Nanog and Sox2. Notch induction was associated with degradation of Ξ²-catenin in c-Kit- cells. In contrast, Notch inhibition resulted in Ξ²-catenin accumulation, acquisition of epitheloid morphology, and up-regulation of Wnt target genes in c-Kit- cells.Our study suggests that Notch-mediated reversible EMT process is a mechanism that regulates explant-derived c-Kit+ and c-Kit- cells

    AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113

    Get PDF
    The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs

    Cellular Levels and Binding of c-di-GMP Control Subcellular Localization and Activity of the Vibrio cholerae Transcriptional Regulator VpsT

    Get PDF
    The second messenger, cyclic diguanylate (c-di-GMP), regulates diverse cellular processes in bacteria. C-di-GMP is produced by diguanylate cyclases (DGCs), degraded by phosphodiesterases (PDEs), and receptors couple c-di-GMP production to cellular responses. In many bacteria, including Vibrio cholerae, multiple DGCs and PDEs contribute to c-di-GMP signaling, and it is currently unclear whether the compartmentalization of c-di-GMP signaling components is required to mediate c-di-GMP signal transduction. In this study we show that the transcriptional regulator, VpsT, requires c-di-GMP binding for subcellular localization and activity. Only the additive deletion of five DGCs markedly decreases the localization of VpsT, while single deletions of each DGC do not impact VpsT localization. Moreover, mutations in residues required for c-di-GMP binding, c-di-GMP-stabilized dimerization and DNA binding of VpsT abrogate wild type localization and activity. VpsT does not co-localize or interact with DGCs suggesting that c-di-GMP from these DGCs diffuses to VpsT, supporting a model in which c-di-GMP acts at a distance. Furthermore, VpsT localization in a heterologous host, Escherichia coli, requires a catalytically active DGC and is enhanced by the presence of VpsT-target sequences. Our data show that c-di-GMP signaling can be executed through an additive cellular c-di-GMP level from multiple DGCs affecting the localization and activity of a c-di-GMP receptor and furthers our understanding of the mechanisms of second messenger signaling

    Caenorhabditis elegans Semi-Automated Liquid Screen Reveals a Specialized Role for the Chemotaxis Gene cheB2 in Pseudomonas aeruginosa Virulence

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity

    Long-Term Persistance of the Pathophysiologic Response to Severe Burn Injury

    Get PDF
    Main contributors to adverse outcomes in severely burned pediatric patients are profound and complex metabolic changes in response to the initial injury. It is currently unknown how long these conditions persist beyond the acute phase post-injury. The aim of the present study was to examine the persistence of abnormalities of various clinical parameters commonly utilized to assess the degree hypermetabolic and inflammatory alterations in severely burned children for up to three years post-burn to identify patient specific therapeutic needs and interventions. Nine-hundred seventy-seven severely burned pediatric patients with burns over 30% of the total body surface admitted to our institution between 1998 and 2008 were enrolled in this study and compared to a cohort non-burned, non-injured children. Demographics and clinical outcomes, hypermetabolism, body composition, organ function, inflammatory and acute phase responses were determined at admission and subsequent regular intervals for up to 36 months post-burn. Statistical analysis was performed using One-way ANOVA, Student's t-test with Bonferroni correction where appropriate with significance accepted at p<0.05. Resting energy expenditure, body composition, metabolic markers, cardiac and organ function clearly demonstrated that burn caused profound alterations for up to three years post-burn demonstrating marked and prolonged hypermetabolism, p<0.05. Along with increased hypermetabolism, significant elevation of cortisol, catecholamines, cytokines, and acute phase proteins indicate that burn patients are in a hyperinflammatory state for up to three years post-burn p<0.05. Severe burn injury leads to a much more profound and prolonged hypermetabolic and hyperinflammatory response than previously shown. Given the tremendous adverse events associated with the hypermetabolic and hyperinflamamtory responses, we now identified treatment needs for severely burned patients for a much more prolonged time
    • …
    corecore