275 research outputs found

    Level densities and γ\gamma-strength functions in 148,149^{148,149}Sm

    Full text link
    The level densities and γ\gamma-strength functions of the weakly deformed 148^{148}Sm and 149^{149}Sm nuclei have been extracted. The temperature versus excitation energy curve, derived within the framework of the micro canonical ensemble, shows structures, which we associate with the break up of Cooper pairs. The nuclear heat capacity is deduced within the framework of both the micro canonical and the canonical ensemble. We observe negative heat capacity in the micro canonical ensemble whereas the canonical heat capacity exhibits an S-shape as function of temperature, both signals of a phase transition. The structures in the γ\gamma-strength functions are discussed in terms of the pygmy resonance and the scissors mode built on exited states. The samarium results are compared with data for the well deformed 161,162^{161,162}Dy, 166,167^{166,167}Er and 171,172^{171,172}Yb isotopes and with data from (n,γ\gamma)-experiments and giant dipole resonance studies.Comment: 12 figure

    Level density and thermal properties in rare earth nuclei

    Full text link
    A convergent method to extract the nuclear level density and the gamma-ray strength function from primary gamma-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parameterizations for the E1, M1 and pygmy resonance strength. However, a significant decrease of the pygmy resonance strength at finite temperatures has been observed.Comment: 15 pages including 8 figures. Proceedings article for the conference Nuclear Structure and Related Topics, Dubna, Russia, June 6-10, 200

    Evolution of level density step structures from 56,57-Fe to 96,97-Mo

    Full text link
    Level densities have been extracted from primary gamma spectra for 56,57-Fe and 96,97-Mo nuclei using (3-He,alpha gamma) and (3-He,3-He') reactions on 57-Fe and 97-Mo targets. The level density curves reveal step structures above the pairing gap due to the breaking of nucleon Cooper pairs. The location of the step structures in energy and their shapes arise from the interplay between single-particle energies and seniority-conserving and seniority-non-conserving interactions.Comment: 9 pages, including 5 figure

    Scissors resonance in the quasi-continuum of Th, Pa and U isotopes

    Full text link
    The gamma-ray strength function in the quasi-continuum has been measured for 231-233Th, 232,233Pa and 237-239U using the Oslo method. All eight nuclei show a pronounced increase in gamma strength at omega_SR approx 2.4 MeV, which is interpreted as the low-energy M1 scissors resonance (SR). The total strength is found to be B_SR = 9-11 mu_N^2 when integrated over the 1 - 4 MeV gamma-energy region. The SR displays a double-hump structure that is theoretically not understood. Our results are compared with data from (gamma, gamma') experiments and theoretical sum-rule estimates for a nuclear rigid-body moment of inertia.Comment: 11 pages, 9 figure

    Level densities and thermodynamical properties of Pt and Au isotopes

    Full text link
    The nuclear level densities of 194196^{194-196}Pt and 197,198^{197,198}Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess ΔS=1.9\Delta S=1.9 and 1.11.1 kBk_B is observed in 195^{195}Pt and 198^{198}Au with respect to 196^{196}Pt and 197^{197}Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve

    Enhanced low-energy γ\gamma-decay strength of 70^{70}Ni and its robustness within the shell model

    Full text link
    Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their γ\gamma-emission probability at very low γ\gamma energies. In this work, we present measurements of the γ\gamma-decay strength of 70^{70}Ni over the wide range 1.3Eγ81.3 \leq E_{\gamma} \leq 8 MeV. A significant enhancement is found in the γ\gamma-decay strength for transitions with Eγ<3E_\gamma < 3 MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed E1E1-strength calculations within the quasiparticle time-blocking approximation, which describe our data above Eγ5E_\gamma \simeq 5 MeV very well. Moreover, large-scale shell-model calculations indicate an M1M1 nature of the low-energy γ\gamma strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich 72,74,76Ni^{72,74,76}\mathrm{Ni}.Comment: 9 pages, 9 figure

    Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    Full text link
    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average strength function of 92^{92}Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the 91^{91}Nb(p,γ)92(p,{\gamma})^{92}Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92^{92}Mo. Based on our results, we conclude that the 92^{92}Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.Comment: Submitted to PR

    Statistical properties of 243^{243}Pu, and 242^{242}Pu(n,γ\gamma) cross section calculation

    Full text link
    The level density and gamma-ray strength function (gammaSF) of 243Pu have been measured in the quasi-continuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The gammaSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of omega_{SR}=2.42(5)MeV and a total strength of B_{SR}=10.1(15)mu_N^2, which is in excellent agreement with sum-rule estimates. The measured level density and gammaSF were used to calculate the 242Pu(n,gamma) cross section in a neutron energy range for which there were previously no measured data.Comment: 9 pages, 8 figure
    corecore