331 research outputs found

    Low rank perturbations and the spectral statistics of pseudointegrable billiards

    Full text link
    We present an efficient method to solve Schr\"odinger's equation for perturbations of low rank. In particular, the method allows to calculate the level counting function with very little numerical effort. To illustrate the power of the method, we calculate the number variance for two pseudointegrable quantum billiards: the barrier billiard and the right triangle billiard (smallest angle π/5\pi/5). In this way, we obtain precise estimates for the level compressibility in the semiclassical (high energy) limit. In both cases, our results confirm recent theoretical predictions, based on periodic orbit summation.Comment: 4 page

    Collective versus Single--Particle Motion in Quantum Many--Body Systems: Spreading and its Semiclassical Interpretation

    Full text link
    We study the interplay between collective and incoherent single-particle motion in a model of two chains of particles whose interaction comprises a non-integrable part. In the perturbative regime, but for a general form of the interaction, we calculate the spectral density for collective excitations. We obtain the remarkable result that it always has a unique semiclassical interpretation. We show this by a proper renormalization procedure which allows us to map our system to a Caldeira-Leggett--type of model in which the bath is part of the system.Comment: 4 page

    Ordering of Energy Levels in Heisenberg Models and Applications

    Full text link
    In a recent paper we conjectured that for ferromagnetic Heisenberg models the smallest eigenvalues in the invariant subspaces of fixed total spin are monotone decreasing as a function of the total spin and called this property ferromagnetic ordering of energy levels (FOEL). We have proved this conjecture for the Heisenberg model with arbitrary spins and coupling constants on a chain. In this paper we give a pedagogical introduction to this result and also discuss some extensions and implications. The latter include the property that the relaxation time of symmetric simple exclusion processes on a graph for which FOEL can be proved, equals the relaxation time of a random walk on the same graph. This equality of relaxation times is known as Aldous' Conjecture.Comment: 20 pages, contribution for the proceedings of QMATH9, Giens, September 200

    Can billiard eigenstates be approximated by superpositions of plane waves?

    Full text link
    The plane wave decomposition method (PWDM) is one of the most popular strategies for numerical solution of the quantum billiard problem. The method is based on the assumption that each eigenstate in a billiard can be approximated by a superposition of plane waves at a given energy. By the classical results on the theory of differential operators this can indeed be justified for billiards in convex domains. On the contrary, in the present work we demonstrate that eigenstates of non-convex billiards, in general, cannot be approximated by any solution of the Helmholtz equation regular everywhere in R2\R^2 (in particular, by linear combinations of a finite number of plane waves having the same energy). From this we infer that PWDM cannot be applied to billiards in non-convex domains. Furthermore, it follows from our results that unlike the properties of integrable billiards, where each eigenstate can be extended into the billiard exterior as a regular solution of the Helmholtz equation, the eigenstates of non-convex billiards, in general, do not admit such an extension.Comment: 23 pages, 5 figure

    Correlations between spectra with different symmetry: any chance to be observed?

    Full text link
    A standard assumption in quantum chaology is the absence of correlation between spectra pertaining to different symmetries. Doubts were raised about this statement for several reasons, in particular, because in semiclassics spectra of different symmetry are expressed in terms of the same set of periodic orbits. We reexamine this question and find absence of correlation in the universal regime. In the case of continuous symmetry the problem is reduced to parametric correlation, and we expect correlations to be present up to a certain time which is essentially classical but larger than the ballistic time

    Ölümünün 50 nci yıldönümü münasebetile Namık Kemal

    Get PDF
    Taha Toros Arşivi, Dosya Adı: Namık Kemalİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033

    Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards

    Full text link
    We present the expanded boundary integral method for solving the planar Helmholtz problem, which combines the ideas of the boundary integral method and the scaling method and is applicable to arbitrary shapes. We apply the method to a chaotic billiard with unidirectional transport, where we demonstrate existence of doublets of chaotic eigenstates, which are quasi-degenerate due to time-reversal symmetry, and a very particular level spacing distribution that attains a chaotic Shnirelman peak at short energy ranges and exhibits GUE-like statistics for large energy ranges. We show that, as a consequence of such particular level statistics or algebraic tunneling between disjoint chaotic components connected by time-reversal operation, the system exhibits quantum current reversals.Comment: 18 pages, 8 figures, with 3 additional GIF animations available at http://chaos.fiz.uni-lj.si/~veble/boundary

    Tunable Lyapunov exponent in inverse magnetic billiards

    Get PDF
    The stability properties of the classical trajectories of charged particles are investigated in a two dimensional stadium-shaped inverse magnetic domain, where the magnetic field is zero inside the stadium domain and constant outside. In the case of infinite magnetic field the dynamics of the system is the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for weaker magnetic fields the phase space becomes mixed and the chaotic part gradually shrinks. The numerical measurements of the Lyapunov exponent (performed with a novel method) and the integrable/chaotic phase space volume ratio show that both quantities can be smoothly tuned by varying the external magnetic field. A possible experimental realization of the arrangement is also discussed.Comment: 4 pages, 6 figure

    Level spacing distribution of pseudointegrable billiard

    Full text link
    In this paper, we examine the level spacing distribution P(S)P(S) of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed P(S)P(S) is a new type, which is quite different from the previous conclusion. Even in the strong coupling limit, the Poisson-like behavior rather than Wigner-like is seen for S>1S>1, although the level repulsion still remains in the small SS region. The difference from the previous works is analyzed in detail.Comment: 11 pages, REVTeX file, 3 PostScript Figure
    • …
    corecore