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Tunable Lyapunov exponent in inverse magnetic billiards
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1Department of Physics of Complex Systems and

2Department of Solid State Physics, Eötvös University,
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The stability properties of the classical trajectories of charged particles are investigated in a
two dimensional stadium-shaped inverse magnetic domain, where the magnetic field is zero inside
the stadium domain and constant outside. In the case of infinite magnetic field the dynamics
of the system is the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for
weaker magnetic fields the phase space becomes mixed and the chaotic part gradually shrinks.
The numerical measurements of the Lyapunov exponent (performed with a novel method) and the
integrable/chaotic phase space volume ratio show that both quantities can be smoothly tuned by
varying the external magnetic field. A possible experimental realization of the arrangement is also
discussed.
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In the past two decades, developments in nanotech-
nology have made it possible to electrostatically confine
a two-dimensional electron gas (2DEG) in high mobility
heterostructures [1]. In these systems the dynamics of
the electrons is dominated by ballistic motion. Recently,
a new perspective of the research of semiconductor sys-
tems has been emerged by the application of spatially
inhomogeneous magnetic fields. The inhomogeneity of
the magnetic field can be realized experimentally either
by varying the topography of the electron gas [2], or using
ferromagnetic materials [3], or depositing a superconduc-
tor on top of the 2DEG [4]. Numerous theoretical works
also show the increasing interest in the study of electron
motion in inhomogeneous magnetic field [5].
The aim of this Letter is to present a novel, experimen-

tally realizable ballistic 2DEG system which exhibits a
crossover between a well known, ergodic and mixing bil-
liard system (the Bunimovich stadium billiard [6]), and a
pathological integrable system, as the applied magnetic
field is changed. We suppose that the system is in the
ballistic regime, like in many other works (see e.g. [1, 7]),
and our treatment is purely classical. Two characteristic
quantities of the dynamics of this so-called inverse mag-
netic billiard are calculated numerically as a function of
the external magnetic field β: the Lyapunov exponent
λ(β) (of the dominating chaotic component), and the
integrable/chaotic phase space volume ratio ̺(β). The
obtained numerical results show that both quantities are
smooth functions of the magnetic field which means that
the global dynamics of the system passes continuously
from the integrable (β = 0) to the fully chaotic case
(β = ∞). As we shall see below, there is also a clearly
visible correlated dependence between the variation of
the quantities λ(β) and ̺(β). These results, i.e., the fact
that the degree of chaoticity can smoothly be tuned by the
external magnetic field, may motivate the experimental
realization and study of our presently proposed system.
Kosztin et al. have made similar investigations and ob-
servations in Andreev billiard systems [8].

More specifically, the system we suggest is a 2DEG in
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FIG. 1: The trajectories of a charged particle in the inverse
magnetic billiard. The cyclotron radius is Rc = 1/β = 1/2,
in dimensionless units.

an inhomogeneous magnetic field applied perpendicularly
to the system. The magnetic field is considered to be zero
inside a stadium-shaped region and constant β outside.
This arrangement can be realized experimentally by de-
positing a stadium-shaped superconductor patch on the
top of a 2DEG and applying an external homogeneous
magnetic field perpendicular to this structure. The mag-
netic field is excluded from the region covered by the
superconductor, due to the Meissner effect. A part of
a typical classical trajectory is depicted in Fig 1, for an
intermediate value of the magnetic field β = 2. The tra-
jectories in the configuration space are straight segments
inside the stadium, and circular arcs of cyclotron radius
Rc = 1

β
out of this domain. (We assume, for simplicity,

that the particle has unit mass, charge and speed.) At
the boundary of the domain the two pieces of the tra-
jectory join tangentially. As the magnetic field tends to
infinity, β → ∞, the electrons spend less and less time
outside the stadium, and it is also easy to see that in the
limiting case their motion is described by an elastic re-
flection from the wall. For this reason we call our system
inverse magnetic billiard, although in the case of finite
field no real scatterings take place at the boundaries.
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FIG. 2: The Poincaré section of the phase space. The points in the dominating chaotic region were obtained by 50000 iterations
of a single trajectory, while for depicting the islands corresponding to the integrable regions, a few different initial conditions
were used. The values of the cyclotron radii are Rc = 0.05, Rc = 0.3, Rc = 1, respectively.

According to the result of Bunimovich [6], the stadium-
shaped inverse magnetic billiard system is ergodic and
mixing in the β = ∞ case, but as the magnetic field
is decreased, the dynamics becomes partially integrable
and gradually more and more phase space volume is oc-
cupied by the KAM tori (mixed phase space). This phe-
nomenon can clearly be observed on the Poincaré sections
(see Fig. 2) made for different magnetic field values. The
individual points in the Poincaré sections are plotted each
time the particle enters the zero magnetic field region and
crosses the boundary of the stadium. The x coordinate
of the points (0 ≤ x < 4 + 2π) gives the position of the
crossing, measured in anti-clockwise direction from the
point A along the perimeter of the stadium, while the y
coordinate of the points (−1 ≤ y ≤ 1) denotes the sine of
the angle µ representing the direction of the trajectory,
relative to the normal of the boundary (see Fig. 1). It
is well-known that in this parameter space the Poincaré
map is area preserving [9].

It is evident from Fig. 2 that for high magnetic fields
the system is (almost) completely chaotic but with de-
creasing magnetic field, the volume of the integrable re-
gions gradually increases. As we have seen before, for
β = ∞ the system is identical to the Bunimovich bil-
liard, however, in the β → 0 limit the system becomes
pathological in the sense that the cyclotron radius tends
to infinity, so the electron returns to the stadium domain
after longer and longer time intervals.
In order to quantitatively characterize this change of

the phase space portrait we have numerically investi-
gated the integrable/chaotic phase space volume ratio
̺ as a function of the cyclotron radius Rc = 1/β (i.e.,
the inverse magnetic field), and the results are shown
in Fig. 3. The function ̺(Rc), measured by the box-
counting method with a grid of 250 × 250 rectangular
sites, is smooth, and its behavior is characteristically dif-
ferent for higher and lower magnetic fields. For cyclotron
radii less than R1 ≈ 0.01 (i.e., for magnetic fields larger
than β1 ≈ 100) the system is dominantly chaotic, the
area of the integrable phase space regions is practically
negligible (see also Fig. 2.a). For cyclotron radii larger
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FIG. 3: The integrable/chaotic phase space volume ratio as
a function of Rc = 1/β.

than R2 ≈ 0.3, however, the chaotic part increases on
the Poincaré section (see also Fig. 2.c). Between these
two extremities, i.e., for cyclotron radii comparable to
the characteristic size of the billiard, the phase space of
the system is definitely mixed (Fig. 2.b) with integrable
islands of considerable area.
Although the volume of the chaotic bands inside the

integrable islands (ignored in our treatment) is nonzero
in principle, the numerical simulations demonstrate (see
Fig 2) that their contribution to the chaotic phase space
volume is negligible for this system.
Since the positivity of the Lyapunov exponent λ(Rc) is

one of the most characteristic features of chaotic systems,
we have also numerically computed λ(Rc) of the domi-
nating chaotic component as a function of the cyclotron
radius Rc (see Fig. 4).
The obtained function λ(Rc) is again smooth, as ̺(Rc).

It is also clearly visible that the numerical value of the
Lyapunov exponent strongly correlates with the inte-
grable phase space ratio ̺(Rc) measured previously. For
weak magnetic fields (if β / β2 ≈ 2) the Lyapunov ex-
ponent is also small, but as the magnetic field grows,
the value of λ increases, too, and for strong fields (if
β ' β1 ≈ 100) it saturates at the value λ∞ ≈ 0.43, which
agrees well with the Lyapunov exponent of the ordinary
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FIG. 4: Lyaponov exponent as a function of Rc = 1/β.

Bunimovich billiard [10].

In order to measure the Lyapunov exponent, we have
investigated the infinitesimal variations of the trajecto-
ries with the method of Jacobi fields, which was origi-
nally developed for the stability analysis of the geodetic
flow on curved Riemannian manifolds [11]. The method
has successfully been applied to magnetic billiard sys-
tems on planar [12] as well as curved surfaces [13, 14].
The main idea of the method is to study the evolution of
the so-called Jacobi fields along a particular trajectory in
the configuration space, which describe the infinitesimal
variations of the trajectory. This technique is essentially
the same as the method using the tangent map [9], but
our approach is more transparent. The basic technical
novelty is that in our investigations the coordinates de-
scribing the infinitesimal variations are chosen in a more
natural way: they are related to the unvaried trajectory
itself, and not to the somewhat artificial parameters of
the space of the Poincaré section. As a result, the stabil-
ity matrices (i.e., the tangent maps) have a much simpler
form.

In more details, let γ0(t) denote the trajectory in the
configuration space M, whose stability properties we in-
tend to investigate, and let γε(t) be a one-parameter fam-
ily of varied trajectories around the unvaried one γ0, i.e.,
for all ε ∈ (−ε0, ε0), ε0 > 0 the curve γε is a real tra-
jectory in the configuration space, γε=0 = γ0, and the
map γ : (−ε0, ε0)×R → M, (ε, t) 7→ γε(t) is everywhere
continuous, and piecewise smooth. (It is not smooth at
the boundary of the billiard.) The Jacobi field or in-
finitesimal variation vector field Vγ0

corresponding to the

variation γε is the partial derivative Vγ0
(t) = ∂γε(t)

∂ε

∣

∣

∣

ε=0
.

It can be shown that the Jacobi fields Vγ0
(t) satisfy

certain second order differential equation, called Jacobi
equation; it is due to the fact that the varied curves γε
are also real trajectories [11, 13]. In two dimensional
billiard systems we found it convenient to fix the base
vectors

{

γ̇0(t), γ̇
⊥
0 (t)

}

of the coordinate system to the
investigated trajectory γ0(t), in such a way that γ̇0(t)
is the (unit) vector tangential to the trajectory at the
time instant t, and γ̇⊥

0 (t) is obtained from γ̇0(t) by a
rotation through +90◦. In this basis the Jacobi field is

written as Vγ0
(t) = ξ(t) · γ̇0(t) + η(t) · γ̇⊥

0 (t), and for
characterizing a given infinitesimal variation the initial
conditions ξ(t0), η(t0), ξ̇(t0) and η̇(t0) have to be given.
(The real functions ξ and η are the coordinates of the
Jacobi field Vγ0

.)
The number of these initial data can further be reduced

by two, if we notice that i) the longitudinal variations ξ(t)
as well as ii) the variations altering the speed (i.e., for

which ξ̇ 6= 0) are irrelevant in the present investigation,
and they decouple from the other coordinates, so they
can be disregarded. (In the case i) the Jacobi field is
tangential to the unvaried trajectory γ0, thus the varied
curves are just time-shifts of the original one, while ii)
means that we restrict the attention to a constant energy
shell of the phase space, as it is usual in Hamiltonian
systems.)
In planar billiard systems it is an elementary geomet-

ric problem to find the solutions of the Jacobi equation
in terms of the transverse coordinates η(t) and η̇(t) (see
e.g. [12]). Generally, the solution is given by a linear

transformation
[

η′

η̇′

]

= L

[

η
η̇

]

, where the matrix L has

the following special forms for the straight flight in zero
magnetic field (P), for the curved flight in nonzero mag-
netic field (E) and for the boundary transition (T) with
magnetic field change ∆β, respectively:

P(t) =

[

1 t
0 1

]

, (1a)

E(t, β) =

[

cos(βt) 1
β
sin(βt)

−β sin(βt) cos(βt)

]

, (1b)

T(∆β, µ) =

[

1 0
∆β tanµ 1

]

. (1c)

Here t is the time of flight (so βt is the angle of flight),
β denotes the magnetic field and µ is the angle of inci-
dence at the boundary, measured in the way shown in
Fig 1. It is worth noticing that all the three types of
matrices are one-parameter subgroups of SL(2,R), i.e.,
of the group of two by two real matrices with unit deter-
minant. The matrices P and T are parabolic, while the
transformations E are elliptic.
For investigating the long time stability of a given tra-

jectory γ0 the eigenvalues (or the trace) of the product
matrix

. . . (T′

3E3T3P3)(T
′

2E2T2P2)(T
′

1E1T1P1) (2)

have to be calculated, where the individual matrices in
the expression describe, in reverse order, the stability of
the corresponding segments of the motion (in the billiard,
through the boundary outwards, in the magnetic field
and back again into the billiard through the boundary).
This group of four matrices corresponds to a cycle in
the Poincaré sections of Fig. 2. (The matrices T, T

′

correspond to the outward and inward passage through
the boundary, respectively.)
In our simulations the matrices (1) and the product

(2) corresponding to about 25000 cycles were calculated
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explicitly, and the Lyapunov exponents, shown in Fig. 4
were computed as the logarithm of the largest eigenvalue
(practically, the trace) of the resulting matrix divided by
the total time of flight.
The fact that in the β → ∞ limit the inverse magnetic

billiard gives back the dynamics of the normal billiard
system with elastic walls can be checked also in terms of
the stability matrices. A bit lengthy but straightforward
calculation yields that if the billiard wall is a circle of
curvature q, then

lim
β→∞

(

T(−β,−µ)E(t, β)T(β, µ)
)

= −

[

1 0
− 2q

cosµ 1

]

, (3)

which is the stability matrix corresponding to an elastic
reflection on the wall of curvature q [13], as it is expected.
(The signs of the arguments of T can be obtained by
elementary geometric considerations.)
We now turn to the discussion of the conditions of

the experimental realization of the inverse magnetic bil-
liards using GaAs/AlGaAs heterostructure. There are
four characteristic lengths in the system: the Fermi wave-
length (typically λF = 40 nm [1]), the radius r of the sta-
dium, the cyclotron radius Rc and the mean free path l
(which can be as high as 104 nm [1]). The classical ballis-
tic motion of the electrons requires that λF ≪ r, Rc ≪ l.
(The last condition assures that the electron travels
through several Poincaré cycles without scattering on im-
purities.) Fig. 4 shows that the relevant values of the
ratio r/Rc are in the range of 0.01− 1.0. The magnetic
field can be as high as 2 T without destroying supercon-
ductivity. This implies that Rc ' 50 nm (using that the
effective mass of electrons meff = 0.067me, where me is

the mass of the electron, and EF = 14 meV [1]). As-
suming that the size of a superconductor grain is about
r = 1 µm, the cyclotron radii are 50, 300, 1000 nm cor-
responding to data Rc/r in Fig. 2. This implies that
parameter β in Fig. 2 corresponds to the experimental
values of the magnetic field 2, 0.3, 0.2 T, respectively. It
is clear that these experimental values do not perfectly
fit the condition of the classical motion. The semiclassi-
cal or full quantum mechanical treatment of the problem
can be an extension of our work.

The advantage of our suggested setup in comparison
with Andreev billiards (which is another proposed exper-
imental setup for magnetically tunable chaoticity) is that
in our system the electrons travel in a homogeneous het-
erostructure without any scattering on the boundary of
the stadium, whereas in the case of Andreev billiards the
normal reflections may suppress the effect as discussed in
Ref. 8.

We remark that in a real experiment, the profile of the
magnetic field cannot be approximated by a step func-
tion as we assumed before. However, the deviation of
the magnetic field from the sharp profile can easily be
included in classical calculations.

In practice, one would measure the conductance or sus-
ceptibility, which should be sensible to the chaotic nature
of the system tuned by magnetic field [15].
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