37 research outputs found

    Separable balls around the maximally mixed multipartite quantum states

    Full text link
    We show that for an m-partite quantum system, there is a ball of radius 2^{-(m/2-1)} in Frobenius norm, centered at the identity matrix, of separable (unentangled) positive semidefinite matrices. This can be used to derive an epsilon below which mixtures of epsilon of any density matrix with 1 - epsilon of the maximally mixed state will be separable. The epsilon thus obtained is exponentially better (in the number of systems) than existing results. This gives a number of qubits below which NMR with standard pseudopure-state preparation techniques can access only unentangled states; with parameters realistic for current experiments, this is 23 qubits (compared to 13 qubits via earlier results). A ball of radius 1 is obtained for multipartite states separable over the reals.Comment: 8 pages, LaTe

    The compact radio structure of the high-redshift blazar J1430+4204 before and after a major outburst

    Full text link
    The high-redshift (z=4.72) blazar J1430+4204 produced an exceptional radio outburst in 2006. We analyzed 15-GHz radio interferometric images obtained with the Very Long Baseline Array (VLBA) before and after the outburst, to search for possible structural changes on milli-arcsecond angular scales and to determine physical parameters of the source.Comment: Proceedings of the 5th Workshop of Young Researchers in Astronomy and Astrophysics, Budapest, 2009; to be published in J. Phys.: Conf. Series (JPCS); 4 pages, 3 figure

    Studies of Relativistic Jets in Active Galactic Nuclei with SKA

    Get PDF
    Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli & Rawlings 2004). Most of the fundamental questions about the physics of relativistic jets still remain unanswered, and await high-sensitivity radio instruments such as SKA to solve them. These questions will be addressed specially through analysis of the massive data sets arising from the deep, all-sky surveys (both total and polarimetric flux) from SKA1. Wide-field very-long-baseline-interferometric survey observations involving SKA1 will serve as a unique tool for distinguishing between extragalactic relativistic jets and star forming galaxies via brightness temperature measurements. Subsequent SKA1 studies of relativistic jets at different resolutions will allow for unprecedented cosmological studies of AGN jets up to the epoch of re-ionization, enabling detailed characterization of the jet composition, magnetic field, particle populations, and plasma properties on all scales. SKA will enable us to study the dependence of jet power and star formation on other properties of the AGN system. SKA1 will enable such studies for large samples of jets, while VLBI observations involving SKA1 will provide the sensitivity for pc-scale imaging, and SKA2 (with its extraordinary sensitivity and dynamic range) will allow us for the first time to resolve and model the weakest radio structures in the most powerful radio-loud AGN.Comment: 19 pages, 4 figures; to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14_093

    What are the megahertz peaked-spectrum sources?

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [MNRAS (July 1, 2016) 459: 2455-2471. First published online April 7, 2016] is available online at: doi: 10.1093/mnras/stw799Megahertz peaked-spectrum (MPS) sources have spectra that peak at frequencies below 1 GHz in the observer's frame and are believed to be radio-loud active galactic nuclei (AGN). We recently presented a new method to search for high-redshift AGN by identifying unusually compact MPS sources. In this paper, we present European VLBI Network (EVN) observations of 11 MPS sources which we use to determine their sizes and investigate the nature of the sources with ~10 mas resolution. Of the 11 sources, we detect nine with the EVN. Combining the EVN observations with spectral and redshift information, we show that the detected sources are all AGN with linear sizes smaller than 1.1 kpc and are likely young. This shows that low-frequency colour-colour diagrams are an easy and efficient way of selecting small AGN and explains our high detection fraction (82%) in comparison to comparable surveys. Finally we argue that the detected sources are all likely compact symmetric objects and that none of the sources are blazars.Peer reviewe

    TeraHertz Exploration and Zooming-in for Astrophysics (THEZA): ESA Voyage 2050 White Paper

    Get PDF
    This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-sharp imaging of celestial radio sources at the level of angular resolution down to (sub-) microarcseconds. THEZA focuses at millimetre and sub-millimetre wavelengths (frequencies above \sim300~GHz), but allows for science operations at longer wavelengths too. The THEZA concept science rationale is focused on the physics of spacetime in the vicinity of supermassive black holes as the leading science driver. The main aim of the concept is to facilitate a major leap by providing researchers with orders of magnitude improvements in the resolution and dynamic range in direct imaging studies of the most exotic objects in the Universe, black holes. The concept will open up a sizeable range of hitherto unreachable parameters of observational astrophysics. It unifies two major lines of development of space-borne radio astronomy of the past decades: Space VLBI (Very Long Baseline Interferometry) and mm- and sub-mm astrophysical studies with "single dish" instruments. It also builds upon the recent success of the Earth-based Event Horizon Telescope (EHT) -- the first-ever direct image of a shadow of the super-massive black hole in the centre of the galaxy M87. As an amalgam of these three major areas of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality studies in the millimetre and sub-millimetre domain of the electromagnetic spectrum.Comment: White Paper submitted in response to the ESA Call Voyage 205

    The science case and challenges of space-borne sub-millimeter interferometry

    Get PDF
    Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the supermassive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10–20 microarcseconds (0.05–0.1 nanoradian). Further developments towards at least an order of magnitude “sharper” values, at the level of 1 microarcsecond are dictated by the needs of advanced astrophysical studies. The paper emphasis that these higher values can only be achieved by placing millimeter and submillimeter wavelength interferometric systems in space. A concept of such the system, called Terahertz Exploration and Zooming-in for Astrophysics, has been proposed in the framework of the ESA Call for White Papers for the Voyage 2050 long term plan in 2019. In the current paper we present new science objectives for such the concept based on recent results in studies of active galactic nuclei and supermassive black holes. We also discuss several approaches for addressing technological challenges of creating a millimeter/sub-millimeter wavelength interferometric system in space. In particular, we consider a novel configuration of a space-borne millimeter/sub-millimeter antenna which might resolve several bottlenecks in creating large precise mechanical structures. The paper also presents an overview of prospective space-qualified technologies of low-noise analogue front-end instrumentation for millimeter/sub-millimeter telescopes. Data handling and processing instrumentation is another key technological component of a sub-millimeter Space VLBI system. Requirements and possible implementation options for this instrumentation are described as an extrapolation of the current state-of-the-art Earth-based VLBI data transport and processing instrumentation. The paper also briefly discusses approaches to the interferometric baseline state vector determination and synchronisation and heterodyning system. The technology-oriented sections of the paper do not aim at presenting a complete set of technological solutions for sub-millimeter (terahertz) space-borne interferometers. Rather, in combination with the original ESA Voyage 2050 White Paper, it sharpens the case for the next generation microarcsecond-level imaging instruments and provides starting points for further in-depth technology trade-off studies.</p
    corecore