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The Manifold Advantages of
Articulatory Representations,
Including Microphone and
Speaker Normalization

John Hogden (hogden@lanl.gov),
Patrick Valdez, Leonid Gurvits

Los Alamos National Laboratory

I’'m going to be presenting work done with the help‘ of a Leonid Gurvits, whois
a really good mathematician and Patrick Valdez, who actually did most of the
work. I’'m just along for the ride. :



Outline

* Why recovering an articulatory representation
should (not?) be a speech processing step.

» MALCOM: A stochastic model of speech based
on articulation.

e MALCOM inverts functions.

* CO-MALCOM can be used for speech recognition

['m going to be making two broad points during my talk. The first is that we

~should do a transformation from speech acoustics to articulator positions as
part of our speech processing. The second point I will try to make is that we
can do a transformation from speech sounds to articulator positions.

So, more specifically, I’ll start off by talking about why we should not use an
articulatory representation. Then I'll talk about a stochastic model of speech
that, during training, finds the way to transforms acoustics to articulator
positions. The interesting thing about this algorithm is that it finds the
mapping from acoustics to articulation using only acoustic data, which is a bit

like saying we can find a nonlinear regression between x and y using only x
data.

- To support the claim that MALCOM can invert the mapping from acoustics to
articulation, I am going to discuss a mathematical proof, simulation results,
and an experiment that all argue that MALCOM is a fairly general function
inverter.

~ Finally, if T have time, I'll tell you about how I think MALCOM can be
combined with current speech recognition algorithms. The interesting point of
this last topic will be that we don’t have to give up current trellis models to
Incorporate articulation into our recognition algorithms



Why not articulation?

 [t’s impossible to recover articulation from
acoustics.

* Information will be lost in the processing.

Back when I was a graduate student studying ways to recover articulator
positions from acoustics, there were good reasons to believe I was wasting my
time. For example, everyone knew that it was impossible to recover articulator
positions from acoustics because many different articulator positions could be
used to produce that same acoustics. Everyone knew this on the basis of
simulations of the vocal tract and various mathematical models of simplified
tracts. However, there is now a lot of empirical evidence that the simulations
wildly overestimated the extent of the problem. For example, the simulations
would predict that tongue positions could change by two centimeters without
changing the speech acoustics. However, numerous studies using measured
‘acoustics and measured articulator positions have been able to recover articulator
positions from acoustics an order of magnitude better than was predicted by the
simulations. I have to be a bit careful here too, because the predictions of the
simulations would vary by an order of magnitude depending on their
assumptions, but people didn’t seem to notice that at the time.

A second very good reason not to try to recover articulator positions was that it
would require an extra step of processing which would inevitably throw out some
information from the acoustics. - Clearly, we would have more information
working on the raw acoustics. This argument actually contradicts the first
argument. If there is a many to one mapping from articulation to acoustics, then
articulation contains more information than acoustics. So if we can invert the
many-to-one mapping, which I believe is possible using dynamic information,
then we might expect more information in recovered articulator positions than in
acoustics.



Manifolds of Speech
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So let’s talk about why you might want to recover articulator positions. In this picture I show, in blue, the
set of all articulator positions that can be achieved by a hypothetical vocal tract. In this case I’ve shown
only two dimensions, but there is some such set no matter how many articulator dimensions there are. The
red curve is intended to represent a particular trajectory.-

This image shows the set of acoustics that can be produced by all the different articulator positions. The
shape of the set is not correct or important. What you can be sure of, though, is that the set of acoustics is
really just the articulator space contorted and embedded in a higher dimensional space. Similarly, if we have
8 articulator parameters that we transform into 30 -dimensional acoustic vectors, we can be sure that the set
of acoustic values that can be produced is an 8 dimensional manifold in a 30 dimensional space. The
exception to that is acoustic noise. Having an air conditioner in the background will lead to signal that lie
off the manifold. When we use a speech recognition algorithm to estimate Gaussians over the acoustic space,
we are really estimating the parameters of 30 dimensional Gaussians to capture the pdfs over an 8
dimensional space. Clearly, most of the area of any Gaussian isn’t even on the articulatory manifold. An
implication of this is that most of the parameters of the Gaussians are being used to estimate the probability
of acoustic noise. When the noise environment changes, the parameters won’t be accurate anymore, and we
will see recognition performance decrease. ‘

Furthermore, trajectories that are smooth in articulator space are going to be warped like crazy in the
acoustic space. That means it will be harder to use temporal context to filter out noise. For example,
articulator motions have very little energy above, say, 8-15 hz. If we have noise in our articulator positions
estimates, we use a low pass-filter to get rid of most of the noise. We can’t do that in acoustic space because
then we really would be throwing away information. So we are stuck using the previous time step to predect
the next and that means we use much less context to get rid of noise than when we work in an articulator
space.



Manifolds of Speech
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Furthermore, the manifold for a different speaker will have a different shape. The
dimensionality won’t changebut the shape will. If we change the microphone, the manifold
will have yet another shape. I speculate that the articulator trqajectories contain most of the
information about what is being said, and the mapping from articulation to acoustics has most
of the information about who is saying it. To the extent that we can transform the acoustic
space back to an articulatory space, we should be able to better separate information about who
is talking from information about what is being said.

A fina] advantage of recovering an articulatory representation is that it helps circumvent the -
problems with the conditional independence assumption that are often cited for HMM-based
recognition systems. After all, it is pretty clear that if you know the articulator position at
time t, then knowing articulator positions or acoustics at other times gives very little
additional information about the acoustics at t\, and that is what conditional independence
means.



Why articulation?

Better conditional independence assumption.

Fewer parameters to be learned.

Easier to use temporal context.

S‘epa‘rates speaker/microphone info from content.

Information may be gained in the processing. |

So just to summarize, I think an articulatory representation would be better
than an acoustic representation for several reasons. ;



MALCOM

Maximum Likelihood
Continuity Mapping

I’m now going to describe an algorithm called maximum ..., or MALCOM for
short, that can recover articulator positions without articulator measurements.

It is important that we can do the recovery without articulator measurements --
we don’t want to have to measure articulator positions because the mapping
between articulation and acoustics will differ between people and we don’t
want to have to measure articulator positions for everyone.



Algorithm: Non-parametric
, mapping
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- So here is the articulator space like in the last slides, and here is the articulator
-manifold embedded in acoustic space. To use MALCOM, we first run vector
quantization in the acoustic space, which divides up the manifold like this.
Then we feed sequences of VQ codes into MALCOM. From the sequences of
VQ codes, MALCOM learns a mapping to a new space which we call a
continuity map. So a smooth articulator trajectory maps to a an acoustic
sequence, which maps to a sequence of VQ codes, which then maps to a
sequence of positions in the continuity map.

Now we know that articulator trajectories have little energy above around 8
Hz. So MALCOM tries to make the mapping from VQ codes to CM positions
to make trajectories through the CM have no energy above about 8Hz.

In a bit I will show why this recovers an affine transformation of the
articulator positions. What that means is that we won’t really get back the
articulator positions, but that it will be possible to rotate, scale, translate or
reflect the set of positions we get back so that they do match articulator
positions.



Algorithm: Initialization

Dimension 2

Dimension 1

~ Ilied a bit on the last slide. We aren’t really going to map the acoustic regions

to points in a new space, instead we will map each region to a pdf over the

new space. For example, this set of concentric elipses is supposed to represent

- the level curves of a Gaussian distribution diving the probability of a position
in this space, x, given a region in acoustic space, where each region is refered

. to by acode,c. , :

Note that if the axes here were articulation, then this would be a kind of
stochastic mapping between articulation and acoustics. Given an acoustic
region, we could find the probability of each articulator position. Similarly,
we could use Bayes’ law to get the probability of an acoustic region given an
articulator positions.

Obviously this random mapping has nothing to do with articulation, but we’re
going to modify the means and covariances of the gaussians using an EM like
algorithm to get better estimates.



Algorithm: Step 1
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Dimension 1

The first step of the algorithm is to pretend that the mapping is actually the
mapping between acoustics and articulation. Then given a sequence of codes,
we can find the most probable smooth path through the space.

By a smooth path, I mean that if we took a fourier transform of the path, we

would find that it had no energy above some cut-off frequency, for example, 8
hz.

This is the estimated path position for the first sound type in the sequence,
which in this case is sound type 253.
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_Algorithm: Step 2

P(Xlc=32)

P(Xlc=253)

Dimension 2

Dimension 1

Given lots of sequences of acoustic regions, we could find lots of paths
through this constructed space. Given lots of positions corresponding to
- region 253, for example, we can easily imagine adjusting the mean and
covariance structure of this pdf to increase the probability of those points
given the pdf, '
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Algorithm: Summary

o Letting i indicate the current iteration,
repeat the following two steps:

A
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In fact, the whole MALCOM training process is just to repeat those two steps.

Step 1) is to find the most probable paths given the pdf parameters. And step 2
is to increase the probability of the paths by adjusting the pdf paramters.

Each step increases the probability of the paths, so we end up with a kind of
maximum likelihood solution.

12



Bandpass signals lie
on a linear subspace
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So far I’ve given you no reason to believe that the paths recovered by
-MALCOM converge to the actual articulator paths. Now I’'m going to start
explaining why we should expect MALCOM to get back articulation.

TIn order to understand it, however, we first need to think about articulator
trajectories, that is sequences of atticulator positions, as points in a high
dimensional space.

For example, the sequence x(1), x(2), ... can be thought of as a vector or a
point in a high dimensional space. If we look at all the trajectories that have
no energy above some cutoff frequency, we will find that they lie on a
hyperplane cutting through the path space.

13
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Bandpass signals lie
on a linear subspace
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We know that because the set of all signals with no energy above some cutoff
frequency can be represented as a matrix multiplication, where we multiply a
matrix whose columns are low frequency cosine and sine waves by some

- arbitrary vector.

So smooth paths lie on a linear subspace of the path space.
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MALCOM Function Inversion
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Let’s look again at the mappings of speech production. Articulator trajectories
make the speech, and articulator trajectories lie on a hyperplane. The vocal
tract transforms the trajectories by the non-linear function f(x) into the
acoustic space, where the trajectories do not lie on a hyperplane. Finally,
MALCOM finds a mapping, g(), from acoustic space back to some space
where the paths are again smooth, assuming that is possible.

We can also think about this composite mapping h(x), which is just g() of £().
But since h() maps from smooth paths to smooth paths, it is actually mapping
from points lying on a hyperplane to points lying on a hyperplane.

Interestingly, we have a proof that, for hyperplanes of interest, a mapping from
the hyperplane to itself must be affine. So the trajectories that MALCOM

recovers must be only an affine transformation of the original articulator
trajectories.

Typically, we don’t care too much about affine differences. For example, the

affine transformations of a 1D signal are simply changing the amplitude of the
signal or adding a D.C. component. To the extent that these are irrelevant for
the problem at hand, MALCOM essentiallly recovers the articulator positions,
and inverts the nonlinear transformation, ().
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Simulation: 1-D to 1-D
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Our proof basically says that any function that maps all points on a linear
subspace to the same linear subspace then the function is affine. However, we
will never get to see all points on a linear subspace, so you might ask whether
‘we can invert functions when we only get a sampling of points.

We did some simulations to address the issue. We started out looking at

~ 1dimensional signals. We generated a bunch of random smooth paths, which
are signals that have random amplitudes and phases of frequencies below some
cutoff. Then we do a non-linear warping of the signal. Then we quantize the
signal into some number of regions and run MALCOM to see if we can
recover the original signal.

So if our random smooth path looked like this, which isn’t very random
because it has only one cosine wave but go with me on this, then it would get
warped by our nonlinearity and MALCOM would try to find a mapping that
inverts the warping.
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Simulation: 1D to 1D mapping

* Input
— Cut-off frequency set to SHz
— Sampled at 100 samples/sec

~ Bach input is the sum of random amounts of
frequencies below the cut-off

-- 100 input signals of 200 samples/signal
* Input/output function
— cubic
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1-D to 1-D Inversion Results
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By the way, we chose a cubic warping because Reynolds and Quartieri used a
- cubic warping to model the effects of a carbon button microphone.



Simulation: 2-D to 2-D
Cubic Transformation
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We tried out essentially the same simulation using 2-D paths. So when we
generate a couple hundred smooth paths through a 2-D space and look at the
points on the paths, we see a distribution of points that looks like this.

When we apply a cubic warping, our distribution is transformed to look like
this. which is a prettv severe warning.
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2-D to 2-D Inversion Results
Cubic Transformation
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Again, as measured by the correlation between the MALCOM output and the
~unwarped paths, MALCOM was able to invert the nonlinearity.
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Simulation: 2-D to 2-D
Swiss Roll Transformation
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We also looked at a warping that embedded a 2D manifoold in a 3D space.

this case we used a “Swiss Roll” transformation that looks like this.

In
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Correlation

2-D to 2-D Inversion Results
Swiss Roll Transformation
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Again, once we used enough VQ codes, we were able to invert the nonlinear

warping.
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Frequency Mismatch
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We also realize that we will never see real data that has a strict cutoff
frequency. There will always be some energy above the cutoff, so the
unwarped signals will not necessarily lie exactly on a hyperplane.

So we did some simulations to see whether MALCOM will completely fall
-apart when the assumptions are off a bit. In this case, we created randome
smooth paths with energy up to 16 Hz, did a cubic transformation on the input

signal, ran MALCOM, and then found the correlation between the MALCOM
output and the filtered random signal,

Actually, we tried several different cut-off freqeuncies for the random smooth

paths, but always told MALCOM that the input signal only had energy up to 8
Hz.
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1-D to 1-D Frequency Mismatch
(SMALCOM told 8Hz.)
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Again, the correlations were high. This plot shaws how the asymptotic
correlation changed with changing the cutoff frequency of the input signal.
Noteice that the correlation axis starts at .9, so all the correlations are high, but
they do drop off as the mismatch between reality and the MALCOM

- assumptions increases.
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Articulator Data
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We also did an experiment with measured articulator positions and recorded
speech. In this case we had a speaker produce vowel to vowel transtions and
we recorded the positions of pellets glued to his tongue, jaw, and lips. The
pellets are labelled ...




MALCOM vs. Principal Components
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We then ran MALCOM just on the recorded speech, but we found that the
~output of MALCOM was highly correlated with the articulator positions. This
plot shows the results. Again note that the y axis starts at a correlation of 0.75,
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PDFs of VQ codes
and Phonemes
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So if we want to do speech recognition, we could start placing Gaussians over
the MALCOM output and infer phonemes from that. For example, in addition
to the gaussinas that give the probability of points in the recovered articulator

space given VQ codes, we could have distributions that give the probability of
points in the recovered articulator space given phonemes.
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CO-MALCOM
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Then MALCOM could look at sequences of VQ codes, produce estimated

articulator trajectories, and using those extra Gaussians, we could output
something like this:

~ At each time we would have the probability of each phoneme. With this

technique, the values in a row will always sum to 1, as a good probability
should.



CO-MALCOM

+Vvoice | -voice |+nasal | -nasal

""""" 09 01 | 08 02
05 05| 06 04

t=3 | 0.1 09 | 02 0.8

Alternately, we could try to recover articulator features, such as voicing or
nasalization. This could give us a speed advantage.



CO-MALCOM

Conditional-Observable MALCOM

— Training: Maximize P[fIX(c, @), ¢]
— Recognition:

+ Find X(c, ¢)

* For each time, find P[flX(c, @), ¢]

If we take this approach, however, we should try to optimize all the ,
-MALCOM parameters at the same time. We have a algorithm, called CO-
MALCOM that let’s us optimize both the paramters of the distribution that
give the mapping between VQ codes and articulator positions and the
paramters that give the relationship between phonemes and articulator position
~ jointly, which should give better recognition.
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HMM/MALCOM Hybrid

» Use currently available language models to get the
probabilities of words given previous words.

» Use currently available word models to get the
probabilities of phonemes given words.

e Use CO-MALCOM to get probabilities of
phonemes given acoustics.

* Use slightly modified forward algorithm to
cornbine the above probabilities for recognition.

‘We also have a way to use a slightly modified forward algorithm to combine
CO-MALCOM with the trellis models that people use now

So doing MALCOM based recognition does not mean that we have to throw
out the word and language models we use now. I often just think of
MALCOM as an alternate acoustic model.
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Articulator positions recovered from acoustics should:

Conclusions

Be more robust to the noise environment
Be easier to use with interpolation schemes
Be invariant to microphone non-linearities
Be more robust to speaker differences

Allow better modeling of the conditional independence of
speech signals

Allow us to better build speech production knowledge into
our recognition algorithms

Not interfere with the usage of a standard trellis model

32



Somatosensory Homunculus

' M:M.:Marzenich ‘et al.

BEFORE DIEFERENTIAL
STIMULATION .

AFTER DIFFERENTIAL
STIMULATION -

I’m going to take a couple minutes giving you a bit of background on the work
I’ll be presenting. When I was a graduate student I went to a talk about the
work of Michael Merzenich. Merzenich was looking at the brain’s
somatosensory homunculus. It turns out that you can draw a picture of a
monkeys hand on a monkeys brain so that when you poke the monkey’s
thumb, the thumb part of the brain will light up, and when you poke the pinky,
the pinky part of the brain lights up. -

So numbering the fingers 1-5, we flnd that they are represented by region 1-5
on the brain, where those regions are positioned like in this figure. Merzenich
took a nerve from the monkey’s pinky and put it in the monkeys thumb.  Of
course, at first when the nerve was touched, the pinky part of the brain lit up,
but a month later the brain reorganized itself so when you touched the nerve,
the thumb part of the brain lit up.

The brain was able to do that reorganization because we don’t touch one nerve
at a time, we tend to touch lots of adjacent nerves at the same time. All the
brain needs to do is represent nerves by nearby locations locations if they tend
to be active at the same time.

Similarly, since we know that sounds produced sufficiently close in time must
have been produced by similar articulator configuratons, if we represent
sounds by nearby location if they tend to occur close in time, we can get back
information about articulator positions from sounds.
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