1,286 research outputs found
Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress
ABSTRACT Extensive bleaching of corals occurred at Heron Island Reef during the 1998 mass bleaching event on the Great Barrier Reef, Australia. Two hundred coral colonies were labelled and sampled on the reef flat at Heron Island in March 1998 (when approximately 80% of corals growing in the intertidal reef flat were bleached). These included both bleached and unbleached colonies of many species. Bleached colonies of all sampled species had lower densities of symbiotic dinoflagellates and lower chlorophyll a concentrations per surface area of coral tissue than unbleached colonies. Samples of the colonies were decalcified and polyps dissected to determine fecundity. There were significantly fewer eggs present in the bleached than unbleached colonies in all sampled species. In many species, no eggs were present in the bleached colonies. Eggs that were present were also significantly smaller in the bleached than the unbleached colonies of the majority of species sampled. There were also significantly fewer polyps containing eggs and testes in the bleached than the unbleached colonies. The percentage of tissue made up by lipids in the bleached colonies was significantly lower than that of the unbleached colonies in some species. By July 1998, 23% of the sampled colonies had died and many of the previously bleached colonies had regained their colour, suggesting visually that they had recovered. However, previously bleached colonies in November 1998 still had fewer eggs and reproductive polyps than colonies that had been previously unbleached. In July of the following year, in the middle of the Australian winter, many of the corals that had bleached the year before bleached again and more colonies had died. In contrast, none of the previously unbleached colonies bleached at this time. In November 1999, just prior to the spawning period, there were large areas of coral on the reef slope that were noticeably pale. These pale colonies were sampled along with adjacent normally pigmented corals and the pale colonies were almost entirely devoid of eggs. During the 1998 bleaching event approximately 80% of the reef slope colonies were bleached, so it is likely that these pale colonies were previously bleached colonies. These data suggest that bleaching has adverse and long-lasting effects on coral reproduction and that previously bleached colonies may be more susceptible to future stress
Biological Pathway Specificity in the CellâDoes Molecular Diversity Matter?
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150499/1/bies201800244_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150499/2/bies201800244.pd
Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57
BackgroundTransient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers.MethodsGenome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing.ResultsWe found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif.ConclusionsWe have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional studies of the locus might provide further insight into the etiology of the disease.<br/
Present Limits to Heat-Adaptability in Corals and Population-Level Responses to Climate Extremes
Climate change scenarios suggest an increase in tropical ocean temperature by 1â3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33â35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as âcritically endangeredâ. We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naĂŻve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within âŒ20 years
Sharing the slope: depth partitioning of agariciid corals and associated <i>Symbiodinium</i> across shallow and mesophotic habitats (2-60 m) on a Caribbean reef
Background: Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef.<br>Results: The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution ("shallow": A. humilis / A. agaricites and "deep": A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between "shallow" and "deep" host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes.<br>Conclusions: Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths
The Nondeterministic Waiting Time Algorithm: A Review
We present briefly the Nondeterministic Waiting Time algorithm. Our technique
for the simulation of biochemical reaction networks has the ability to mimic
the Gillespie Algorithm for some networks and solutions to ordinary
differential equations for other networks, depending on the rules of the
system, the kinetic rates and numbers of molecules. We provide a full
description of the algorithm as well as specifics on its implementation. Some
results for two well-known models are reported. We have used the algorithm to
explore Fas-mediated apoptosis models in cancerous and HIV-1 infected T cells
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local
management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef
fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions
and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the
1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites
and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure,
diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale
integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales,
with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas
still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should
be integrated into existing management frameworks and combined with policies to improve system-wide resilience to
climate variation and change
- âŠ