45 research outputs found

    Board Level Proton Testing Book of Knowledge for NASA Electronic Parts and Packaging Program

    Get PDF
    This book of knowledge (BoK) provides a critical review of the benefits and difficulties associated with using proton irradiation as a means of exploring the radiation hardness of commercial-off-the-shelf (COTS) systems. This work was developed for the NASA Electronic Parts and Packaging (NEPP) Board Level Testing for the COTS task. The fundamental findings of this BoK are the following. The board-level test method can reduce the worst case estimate for a board's single-event effect (SEE) sensitivity compared to the case of no test data, but only by a factor of ten. The estimated worst case rate of failure for untested boards is about 0.1 SEE/board-day. By employing the use of protons with energies near or above 200 MeV, this rate can be safely reduced to 0.01 SEE/board-day, with only those SEEs with deep charge collection mechanisms rising this high. For general SEEs, such as static random-access memory (SRAM) upsets, single-event transients (SETs), single-event gate ruptures (SEGRs), and similar cases where the relevant charge collection depth is less than 10 m, the worst case rate for SEE is below 0.001 SEE/board-day. Note that these bounds assume that no SEEs are observed during testing. When SEEs are observed during testing, the board-level test method can establish a reliable event rate in some orbits, though all established rates will be at or above 0.001 SEE/board-day. The board-level test approach we explore has picked up support as a radiation hardness assurance technique over the last twenty years. The approach originally was used to provide a very limited verification of the suitability of low cost assemblies to be used in the very benign environment of the International Space Station (ISS), in limited reliability applications. Recently the method has been gaining popularity as a way to establish a minimum level of SEE performance of systems that require somewhat higher reliability performance than previous applications. This sort of application of the method suggests a critical analysis of the method is in order. This is also of current consideration because the primary facility used for this type of work, the Indiana University Cyclotron Facility (IUCF) (also known as the Integrated Science and Technology (ISAT) hall), has closed permanently, and the future selection of alternate test facilities is critically important. This document reviews the main theoretical work on proton testing of assemblies over the last twenty years. It augments this with review of reported data generated from the method and other data that applies to the limitations of the proton board-level test approach. When protons are incident on a system for test they can produce spallation reactions. From these reactions, secondary particles with linear energy transfers (LETs) significantly higher than the incident protons can be produced. These secondary particles, together with the protons, can simulate a subset of the space environment for particles capable of inducing single event effects (SEEs). The proton board-level test approach has been used to bound SEE rates, establishing a maximum possible SEE rate that a test article may exhibit in space. This bound is not particularly useful in many cases because the bound is quite loose. We discuss the established limit that the proton board-level test approach leaves us with. The remaining possible SEE rates may be as high as one per ten years for most devices. The situation is actually more problematic for many SEE types with deep charge collection. In cases with these SEEs, the limits set by the proton board-level test can be on the order of one per 100 days. Because of the limited nature of the bounds established by proton testing alone, it is possible that tested devices will have actual SEE sensitivity that is very low (e.g., fewer than one event in 1 10(exp 4) years), but the test method will only be able to establish the limits indicated above. This BoK further examines other benefits of proton board-level testing besides hardness assurance. The primary alternate use is the injection of errors. Error injection, or fault injection, is something that is often done in a simulation environment. But the proton beam has the benefit of injecting the majority of actual SEEs without risk of something being missed, and without the risk of simulation artifacts misleading the SEE investigation

    NEPP DDR Device Reliability FY13 Report

    Get PDF
    This document reports the status of the NEPP Double Data Rate (DDR) Device Reliability effort for FY2013. The task targeted general reliability of > 100 DDR2 devices from Hynix, Samsung, and Micron. Detailed characterization of some devices when stressed by several data storage patterns was studied, targeting ability of the data cells to store the different data patterns without refresh, highlighting the weakest bits. DDR2, Reliability, Data Retention, Temperature Stress, Test System Evaluation, General Reliability, IDD measurements, electronic parts, parts testing, microcircuit

    Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices

    Get PDF
    Spaceflight system electronic devices must survive a wide range of radiation environments with various particle types including energetic protons, electrons, gamma rays, x-rays, and heavy ions. High-energy charged particles such as heavy ions can pass straight through a semiconductor material and interact with a charge-sensitive region, generating a significant amount of charge (electron-hole pairs) along their tracks. These excess charges can damage the device, and the response can range from temporary perturbations to permanent changes in the state or performance. These phenomena are called single event effects (SEE). Before application in flight systems, electronic parts need to be qualified and tested for performance and radiation sensitivity. Typically, their susceptibility to SEE is tested by exposure to an ion beam from a particle accelerator. At such facilities, the device under test (DUT) is irradiated with large beams so there is no fine resolution to investigate particular regions of sensitivity on the parts. While it is the most reliable approach for radiation qualification, these evaluations are time consuming and costly. There is always a need for new cost-efficient strategies to complement accelerator testing: pulsed lasers provide such a solution. Pulsed laser light can be utilized to simulate heavy ion effects with the advantage of being able to localize the sensitive region of an integrated circuit. Generally, a focused laser beam of approximately picosecond pulse duration is used to generate carrier density in the semiconductor device. During irradiation, the laser pulse is absorbed by the electronic medium with a wavelength selected accordingly by the user, and the laser energy can ionize and simulate SEE as would occur in space. With a tightly focused near infrared (NIR) laser beam, the beam waist of about a micrometer can be achieved, and additional scanning techniques are able to yield submicron resolution. This feature allows mapping of all of the sensitive regions of the studied device with fine resolution, unlike heavy ion experiments. The problematic regions can be precisely identified, and it provides a considerable amount of information about the circuit. In addition, the system allows flexibility for testing the device in different configurations in situ

    Adipocyte ACLY Facilitates Dietary Carbohydrate Handling to Maintain Metabolic Homeostasis in Females

    Get PDF
    Sugars and refined carbohydrates are major components of the modern diet. ATP-citrate lyase (ACLY) is upregulated in adipocytes in response to carbohydrate consumption and generates acetyl-coenzyme A (CoA) for both lipid synthesis and acetylation reactions. Here, we investigate the role of ACLY in the metabolic and transcriptional responses to carbohydrates in adipocytes and unexpectedly uncover a sexually dimorphic function in maintaining systemic metabolic homeostasis. When fed a high-sucrose diet, Acly(FAT-/-) females exhibit a lipodystrophy-like phenotype, with minimal fat accumulation, insulin resistance, and hepatic lipid accumulation, whereas Acly(FAT-/-) males have only mild metabolic phenotypes. We find that ACLY is crucial for nutrient-dependent carbohydrate response element-binding protein (ChREBP) activation in adipocytes and plays a key role, particularly in females, in the storage of newly synthesized fatty acids in adipose tissue. The data indicate that adipocyte ACLY is important in females for the systemic handling of dietary carbohydrates and for the preservation of metabolic homeostasis

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a na茂ve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    DDR2 Device Reliability Update

    No full text
    No abstract availabl

    Analysis of SDRAM SEFIs

    No full text
    No abstract availabl

    Initial SEE Testing of Maestro

    No full text
    We have reported on initial SEE sensitivity of the full 49-core Maestro device. Supporting the low-level structures and qualitative system observation goals of phase 1 of testing. Observed sensitivities found to be consistent with Boeing predictions. Highlighted by the L1 data cache sensitivity which drives the rates on the current Maestro device. Presented details to the hardware and software setups that show where the limitations - highlighting future work. Key future work includes testing with memory and IO ports
    corecore