364 research outputs found

    Processes of firm growth and diversification: theory and evidence

    Get PDF
    In this short research note we investigate the role of diversification in the firm growth process. We build on Penrose's (1959) Theory of the Growth of the Firm to formulate hypotheses about growth of employment, assets, and sales in the years before, during and after a new product introduction. We exploit a new database from the German machine tool industry which boasts a detailed and meaningful definition of diversification. Our exploratory analyses indicate that diversification, in terms of product introductions, is preceded by employment growth. Moreover, we find support that diversification is positively associated with subsequent asset growth, but negatively associated with subsequent employment growth

    A New European Plant-specific Emission Inventory of Biogenic Volatile Organic Compounds for Use in Atmospheric Transport Models

    Get PDF
    We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC), on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004¿2005 averaged annual total biogenic volatile organic compound (BVOC) emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory.JRC.H.2-Climate chang

    Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space

    Get PDF
    Formaldehyde (HCHO) columns measured from space by solar UV backscatter allow mapping of reactive hydrocarbon emissions. The principal contributor to these emissions during the growing season is the biogenic hydrocarbon isoprene, which is of great importance for driving regional and global tropospheric chemistry. We present seven years (1995-2001) of HCHO column data for North America from the Global Ozone Monitoring Experiment (GOME), and show that the general seasonal and interannual variability of these data is consistent with knowledge of isoprene emission. There are some significant regional discrepancies with the seasonal patterns predicted from current isoprene emission models, and we suggest that these may reflect flaws in the models. The interannual variability of HCHO columns observed by GOME appears to follow the interannual variability of surface temperature, as expected from current isoprene emission models

    Active Turbulence and Scalar Transport near the Forest–Atmosphere Interface

    Get PDF
    Turbulent velocity, temperature, water vapor concentration, and other scalars were measured at the canopyatmosphere interface of a 13-14-m-tall uniform pine forest and a 33-m-tall nounuiform hardwood forest. These measurement were used to investigate whether the mixing layer (ML) analogy of Raupach et al. predicts eddy sizes and now characteristics responsible for much of the turbulent stresses and vertical scalar fluxes. For this purpose, wavelet spectra and cospectra were derived and analyzed. It was found that the MI. analogy predicts well vertical velocity variances and integral timescales. However, at low wavenumbers, inactive eddy motion signatures were present in horizontol velocity wavelet spectra, suggesting that MI. may not be suitable for scaling horizontal velocity perturbations. Momentum and scalar wavelet cospectra of turbulent stresses and scalar fluxes demonstrated that active eddy motion, which was shown by Raupach et al. to be the main energy contributor to vertical velocity (w) spectral energy (Em). is also the main scalar flux-transporting eddy motion. Predictions using ML of the peak E, frequency are in excellent agreement with measured waveled cospectral peaks of vertical fluxes (Kh = 1.5, where K is wavenumber and h is canopy height). Using Lorentz wavelet thresholding of vertical velocity time series, wavelet coefficients associated with active turbulence were identified. It was demonstrated that detection frequency of organized structures, as predicted from Lorentz wavelet filtering, relate to the arrival frequency /h and integral timescale, where is the mean horizontal velocity at height z = h. The newly proposed wavelet thresholding approach, which relies on a"global" wavelet threshold formulation for the energy in w, provides simultaneous energy-covariance-preserving characterization of "active" turbulence at the canopy-atmosphere interface
    • …
    corecore