97 research outputs found

    Direct imprinting of organic-inorganic hybrid materials into high aspect ratio sub-100nm structures

    Get PDF
    The challenging fabrication of sub-100-nm structures with high aspect ratio by UV-nanoimprint lithography (NIL) is addressed in this work. Thermal shrinkage is induced by cooling the structures below room temperature to avoid the issues commonly arising during the release of the polymeric nanostructures from the master. The UV-NIL has been performed to obtain OrmoComp® nanostructures using OrmoStamp® working stamps copied from Si masters. Nanoridges and nanopillars with 45nm width and 380nm thickness have been fabricated with a corresponding aspect ratio of 8.5. This is, to the best of our knowledge, the highest aspect ratio achieved using organic-inorganic hybrid materials at the sub-100-nm scale

    Stress and aging minimization in photoplastic AFM probes

    Get PDF
    Photostructurable epoxy based resists, like SU-8, are soft materials with a Young's Modulus around 4 GPa, which makes them particularly suitable as base material to fabricate Atomic Force Microscopy (AFM) probes for non-destructive analysis of fragile samples such as biological materials. In this work, it is shown how by introducing an appropriate processing step consisting of a hard bake, the built-in stress gradient of the final structure was considerably reduced. This improved probes properties such as initial bending and aging and proved the epoxy based resists as good candidates for the low-cost fabrication of micromechanical systems (MEMS) and devices in general. (C) 2008 Elsevier B.V. All rights reserved

    Spontaneous emission control of colloidal nanocrystals using nanoimprinted photonic crystals

    Get PDF
    The authors report on the fabrication and optical characterizations of two-dimensional photonic crystals fabricated by nanoimprint lithography in a nanocomposite polymer incorporating highly luminescent and red emitting (CdSe)ZnS core-shell colloidal nanocrystals. Photonic crystal structures enhance the light emitted from the quantum sized nanoparticles in the composite layer by slowing the propagation speed of the photons, thus increasing the coupling to the out-of-plane radiative modes. A 200% enhancement of the light collection is achieved compared to an unpatterned sample. (c) 2007 American Institute of Physics. (DOI:10.1063/1.2430625

    Slip-rate on the Main Köpetdag (Kopeh Dagh) strike-slip fault, Turkmenistan, and the active tectonics of the South Caspian

    Get PDF
    We provide the first measurement of strike-slip and shortening rates across the 200-km-long right-lateral strike-slip Main Köpetdag Fault (MKDF) in Turkmenistan. Strike-slip and shortening components are accommodated on parallel structures separated by ∼10 km. Using Infra-red-stimulated luminescence and reconstruction of offset alluvial fans we find a right-lateral rate of 9.1 ± 1.3 mm/yr averaged over 100 ± 5 ka, and a shortening rate of only ∼0.3 mm/yr averaged over 35 ± 4 ka across the frontal thrust, though additional shortening is likely to be accommodated locally by folding and faulting, and regionally within the eastern Caspian lowlands to its south. The MKDF is estimated to have ∼35 km of cumulative right-lateral slip which, if these geological measurements are correct, would accumulate in only 3–5 Ma at the rate we have determined, suggesting that the present tectonic configuration started within that time period. We use the MKDF slip-rate to form a velocity triangle, from which we estimate the Iran-South Caspian and Eurasia-South Caspian shortening rates, and show that the South Caspian Basin moves at 10.4 ± 1.1 mm/yr in direction 333° ± 5 relative to Eurasia and at 4.8 ± 0.8 mm/yr in direction 236° ± 14 relative to Iran. In contrast to both the eastern Köpetdag and the Caspian lowlands the MKDF has little recent or historical seismicity. The rapid slip-rate estimated here suggests that it is a zone of high earthquake hazard

    Seismotectonic aspects of the Ms 7.3 1948 October 5 Aşgabat (Ashgabat) earthquake, Türkmenistan: right-lateral rupture across multiple fault segments, and continuing urban hazard

    Get PDF
    The Ms 7.3 1948 Aşgabat earthquake was one of the most devastating earthquakes of the 20th century, yet little is known about its location, style and causative fault. In this study, we bring together new seismic and geomorphic observations with previously published descriptions of surface rupture and damage distributions to determine the likely source of the earthquake. We determine the epicentre and focal mechanism of this earthquake from digitized historical seismograms and the relocation of regional seismicity to show that the earthquake most likely nucleated close to the city of Aşgabat. The earthquake ruptured a right-lateral strike-slip fault to the southeast of the city, which has a clear long-term expression in the landscape, and also likely reactivated a subparallel concealed thrust along the Gyaursdag anticline east of the city. The earthquake potentially also ruptured a right-lateral segment northwest of Aşgabat, which does not have an identifiable expression in the landscape. Using high-resolution satellite imagery and digital elevation models we investigate the geomorphology of active faulting around Aşgabat and adjacent parts of the Köpetdag (Kopeh Dagh) mountain range front, showing that there are significant strike-slip and oblique strike-slip segments adjacent to the city that apparently did not rupture in 1948, and yet show clear geomorphic expression and potential right-lateral displacement of Parthian-era (∼2000 yr) and post-Sassanian era (∼1500 yr) archaeological remains. Luminescence dating of displaced fluvial terraces west of Aşgabat yields a vertical displacement rate of 0.6 mm yr−1, though the strike-slip rate remains undetermined

    Data report: evaluation of shipboard magnetostratigraphy by alternating field demagnetization of discrete samples, Expedition 361, Site U1475

    Get PDF
    The paleomagnetic shipboard data of International Ocean Discovery Program Site U1475, with a record reaching back to approximately 7 Ma, allowed for the identification of major magnetic polarity chrons and subchrons back to ~3.5 Ma. However, the natural remanent magnetization (NRM) was very weak, and transitional intervals with unclear polarity were as thick as several meters. The midpoints of these transitional intervals were reported in the shipboard results without decimal places because of the poor data quality. To evaluate and possibly refine the shipboard magnetostratigraphy, subsampling was performed across the polarity transitions. Detailed alternating field (AF) demagnetization experiments were conducted on these discrete samples and were complemented by anhysteretic remanent magnetization acquisition measurements and subsequent demagnetization. AF demagnetization data of NRM were analyzed using anchored principal component analysis (PCA) to obtain the characteristic remanent magnetization. These PCA results generally confirm the smoothed signal across polarity transitions at Site U1475. However, the midpoint depths of the top of the Keana Subchron, the Gauss-Matuyama and Matuyama-Brunhes boundaries, and the base of the Olduvai Subchron were adjusted

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link
    corecore