60 research outputs found

    Independent Domestication of Two Old World Cotton Species

    Get PDF
    Domesticated cotton species provide raw material for the majority of the world\u27s textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton ( Gossypium hirsutum L.) and the other to Egyptian cotton ( Gossypium barbadense L.). However, two diploid cotton species, Gossypium arboreum L. and Gossypium herbaceum L., have been cultivated for several millennia, but their status as independent domesticates has long been in question. Using genome resequencing data, we estimated the global abundance of various repetitive DNAs. We demonstrate that, despite negligible divergence in genome size, the two domesticated diploid cotton species contain different, but compensatory, repeat content and have thus experienced cryptic alterations in repeat abundance despite equivalence in genome size. Evidence of independent origin is bolstered by estimates of divergence times based on molecular evolutionary analysis of f7,000 orthologous genes, for which synonymous substitution rates suggest that G. arboreum and G. herbaceum last shared a common ancestor approximately 0.4–2.5 Ma. These data are incompatible with a shared domestication history during the emergence of agriculture and lead to the conclusion that G. arboreum and G. herbaceum were each domesticated independently

    The Gossypium longicalyx genome as a resource for cotton breeding and evolution

    Get PDF
    Cotton is an important crop that has made significant gains in production over the last century. Emerging pests such as the reniform nematode have threatened cotton production. The rare African diploid specie

    Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement

    Get PDF
    Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement

    Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton.

    Get PDF
    Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants. [Abstract copyright: © 2023. The Author(s).

    CenH3 evolution in diploids and polyploids of three angiosperm genera

    Get PDF
    BACKGROUND: Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. In addition, we compare expression profiles and alternative splicing patterns for CenH3 in representatives of each genus. RESULTS: All three genera retain both duplicated CenH3 copies, while Brassica and Gossypium exhibit pronounced homoeologous expression level bias. Comparisons among genera reveal shared and unique aspects of CenH3 evolution, variable levels of diversifying selection in different CenH3 domains, and that alternative splicing contributes significantly to CenH3 diversity. CONCLUSIONS: Since the N terminus is subject to diversifying selection but the DNA binding domains do not appear to be, rapidly evolving centromere sequences are unlikely to be the primary driver of CenH3 sequence diversification. At present, the functional explanation for the diversity generated by both conventional protein evolution in the N terminal domain, as well as alternative splicing, remains unexplained. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0383-3) contains supplementary material, which is available to authorized users

    Targeted sequence capture as a powerful tool for evolutionary analysis

    No full text
    International audienceNext-generation sequencing technologies (NGS) have revolutionized biological research by significantly increasing data generation while simultaneously decreasing the time to data output. For many ecologists and evolutionary biologists, the research opportunities afforded by NGS are substantial; even for taxa lacking genomic resources, large-scale genome-level questions can now be addressed, opening up many new avenues of research. While rapid and massive sequencing afforded by NGS increases the scope and scale of many research objectives, whole genome sequencing is often unwarranted and unnecessarily complex for specific research questions. Recently developed targeted sequence enrichment, coupled with NGS, represents a beneficial strategy for enhancing data generation to answer questions in ecology and evolutionary biology. This marriage of technologies offers researchers a simple method to isolate and analyze a few to hundreds, or even thousands, of genes or genomic regions from few to many samples in a relatively efficient and effective manner. These strategies can be applied to questions at both the infra- and interspecific levels, including those involving parentage, gene flow, divergence, phylogenetics, reticulate evolution, and many more. Here we provide a brief overview of targeted sequence enrichment, and emphasize the power of this technology to increase our ability to address a wide range of questions of interest to ecologists and evolutionary biologists, particularly for those working with taxa for which few genomic resources are available

    Data from: Insights into the ecology and evolution of polyploid plants through network analysis

    No full text
    Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species
    • …
    corecore