16,922 research outputs found
On the use of the Fourier Transform to determine the projected rotational velocity of line-profile variable B stars
The Fourier Transform method is a popular tool to derive the rotational
velocities of stars from their spectral line profiles. However, its domain of
validity does not include line-profile variables with time-dependent profiles.
We investigate the performance of the method for such cases, by interpreting
the line-profile variations of spotted B stars, and of pulsating B tars, as if
their spectral lines were caused by uniform surface rotation along with
macroturbulence. We perform time-series analysis and harmonic least-squares
fitting of various line diagnostics and of the outcome of several
implementations of the Fourier Transform method. We find that the projected
rotational velocities derived from the Fourier Transform vary appreciably
during the pulsation cycle whenever the pulsational and rotational velocity
fields are of similar magnitude. The macroturbulent velocities derived while
ignoring the pulsations can vary with tens of km/s during the pulsation cycle.
The temporal behaviour of the deduced rotational and macroturbulent velocities
are in antiphase with each other. The rotational velocity is in phase with the
second moment of the line profiles. The application of the Fourier method to
stars with considerable pulsational line broadening may lead to an appreciable
spread in the values of the rotation velocity, and, by implication, of the
deduced value of the macroturbulence. These two quantities should therefore not
be derived from single snapshot spectra if the aim is to use them as a solid
diagnostic for the evaluation of stellar evolution models of slow to moderate
rotators.Comment: 13 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
The population of AM CVn stars from the Sloan Digital Sky Survey
The AM Canum Venaticorum stars are rare interacting white dwarf binaries,
whose formation and evolution are still poorly known. The Sloan Digital Sky
Survey provides, for the first time, a sample of 6 AM CVn stars (out of a total
population of 18) that is sufficiently homogeneous that we can start to study
the population in some detail.
We use the Sloan sample to `calibrate' theoretical population synthesis
models for the space density of AM CVn stars. We consider optimistic and
pessimistic models for different theoretical formation channels, which yield
predictions for the local space density that are more than two orders of
magnitude apart. When calibrated with the observations, all models give a local
space density of 1-3x10^{-6} pc^{-3}, which is lower than expected.
We discuss the implications for the formation of AM CVn stars, and conclude
that at least one of the dominant formation channels (the double-degenerate
channel) has to be suppressed relative to the optimistic models. In the
framework of the current models this suggests that the mass transfer between
white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary
effects that have so far not been considered in population synthesis models,
but which could be of influence for the observed population. We finish by
remarking that, with our lower space density, the expected number of Galactic
AM CVn stars resolvable by gravitational-wave detectors like LISA should be
lowered from current estimates, to about 1,000 for a mission duration of one
year.Comment: Accepted to MNRA
Impact and extinction signatures in complete Cretaceous-Tertiary (K-T) boundary sections
The Zumaya, Caravaca and Agost sections in Spain, the El Kef section in Tunisia and the Negev (Nahal Avdat) sections in Israel are among the most continuous, expanded and complete K-T boundary sections. The distribution patterns of the planktic faunas were quantitatively analyzed in closely spaced samples across the K-T boundary in these sections, in conjuction with the geochemistry, stable isotopes, mineralogy and magnetostratigraphy. Three hundred foraminiferal specimens were randomly selected and determined. Reliable estimates for the foraminiferal productivity changes across the K-T boundary and for the 1 to 2 Ma interval preceding the K-T boundary were made from the numbers of individuals/gram of sediment corrected for the sedimentation rates (calculated from magnetic reversals and lithology). No gradual or stepwise extinction is seen below the K-T boundary nor any productivity decrease. Stable isotope analyses show a warming just after deposition of the ejecta layer, not cooling as predicted by nuclear winter scenarios, although the duration of such cooling may be too short to be observed even in these complete sections. Low REE values and cpx spherules with quench textures idential to quench-textures in diagenetically altered spherules, strongly indicate an oceanic site of (one of) the impactor(s)
Time-resolved X-Shooter spectra and RXTE light curves of the ultra-compact X-ray binary candidate 4U 0614+091
In this paper we present X-Shooter time resolved spectroscopy and RXTE PCA
light curves of the ultra-compact X-ray binary candidate 4U 0614+091. The
X-Shooter data are compared to the GMOS data analyzed previously by Nelemans et
al. (2004). We confirm the presence of C III and O II emission features at ~
4650 {\AA} and ~ 5000 {\AA}. The emission lines do not show evident Doppler
shifts that could be attributed to the motion of the donor star/hot spot around
the center of mass of the binary. We note a weak periodic signal in the
red-wing/blue-wing flux ratio of the emission feature at ~ 4650 {\AA}. The
signal occurs at P = 30.23 +/- 0.03 min in the X-Shooter and at P = 30.468 +/-
0.006 min in the GMOS spectra when the source was in the low/hard state. Due to
aliasing effects the period in the GMOS and X-Shooter data could well be the
same. We deem it likely that the orbital period is thus close to 30 min,
however, as several photometric periods have been reported for this source in
the literature already, further confirmation of the 30 min period is warranted.
We compare the surface area of the donor star and the disc of 4U 0614+091 with
the surface area of the donor star and the disc in typical hydrogen-rich
low-mass X-ray binaries and the class of AM Canum Venaticorum stars and argue
that the optical emission in 4U 0614+091 is likely dominated by the disc
emission. Additionally, we search for periodic signals in all the publicly
available RXTE PCA light curves of 4U 0614+091 which could be associated with
the orbital period of this source. A modulation at the orbital period with an
amplitude of ~ 10% such as those that have been found in other ultra-compact
X-ray binaries (4U 0513-40, 4U 1820-30) is not present in 4U 0614+091.Comment: Accepted for publication in MNRAS, 11 pages, 7 figure
Photometric Variability in the Faint Sky Variability Survey
The Faint Sky Variability Survey (FSVS) is aimed at finding photometric
and/or astrometric variable objects between 16th and 24th mag on time-scales
between tens of minutes and years with photometric precisions ranging from 3
millimag to 0.2 mag. An area of 23 deg, located at mid and high Galactic
latitudes, was covered using the Wide Field Camera (WFC) on the 2.5-m Isaac
Newton Telescope (INT) on La Palma. Here we present some preliminary results on
the variability of sources in the FSVS.Comment: 4 pages, 3 figures, to appear in 14th European Workshop on White
Dwarfs, ASP Conference Series, eds. D. Koester, S. Moehle
Partial-measurement back-action and non-classical weak values in a superconducting circuit
We realize indirect partial measurement of a transmon qubit in circuit
quantum electrodynamics by interaction with an ancilla qubit and projective
ancilla measurement with a dedicated readout resonator. Accurate control of the
interaction and ancilla measurement basis allows tailoring the measurement
strength and operator. The tradeoff between measurement strength and qubit
back-action is characterized through the distortion of a qubit Rabi oscillation
imposed by ancilla measurement in different bases. Combining partial and
projective qubit measurements, we provide the solid-state demonstration of the
correspondence between a non-classical weak value and the violation of a
Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures
Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates
We present a theoretical analysis of the selective darkening method for
implementing quantum controlled-NOT (CNOT) gates. This method, which we
recently proposed and demonstrated, consists of driving two
transversely-coupled quantum bits (qubits) with a driving field that is
resonant with one of the two qubits. For specific relative amplitudes and
phases of the driving field felt by the two qubits, one of the two transitions
in the degenerate pair is darkened, or in other words, becomes forbidden by
effective selection rules. At these driving conditions, the evolution of the
two-qubit state realizes a CNOT gate. The gate speed is found to be limited
only by the coupling energy J, which is the fundamental speed limit for any
entangling gate. Numerical simulations show that at gate speeds corresponding
to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and
increases further for lower gate speeds. In addition, the effect of
higher-lying energy levels and weak anharmonicity is studied, as well as the
scalability of the method to systems of multiple qubits. We conclude that in
all these respects this method is competitive with existing schemes for
creating entanglement, with the added advantages of being applicable for qubits
operating at fixed frequencies (either by design or for exploitation of
coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure
Kinematics of the ultracompact helium accretor AM canum venaticorum
We report on the results from a five-night campaign of high-speed spectroscopy of the 17-min binary AM Canum Venaticorum (AM CVn), obtained with the 4.2-m William Herschel Telescope on La Palma.
We detect a kinematic feature that appears to be entirely analogous to the 'central spike' known from the long-period, emission-line AM CVn stars GP Com, V396 Hya and SDSS J124058.03-015919.2, which has been attributed to the accreting white dwarf. Assuming that the feature indeed represents the projected velocity amplitude and phase of the accreting white dwarf, we derive a mass ratio q = 0.18 +/- 0.01 for AM CVn. This is significantly higher than the value found in previous, less direct measurements. We discuss the implications for AM CVn's evolutionary history and show that a helium star progenitor scenario is strongly favoured. We further discuss the implications for the interpretation of AM CVn's superhump behaviour, and for the detectability of its gravitational-wave signal with the Laser Interferometer Space Antenna (LISA).
In addition, we demonstrate a method for measuring the circularity or eccentricity of AM CVn's accretion disc, using stroboscopic Doppler tomography. We test the predictions of an eccentric, precessing disc that are based on AM CVn's observed superhump behaviour. We limit the effective eccentricity in the outermost part of the disc, where the resonances that drive the eccentricity are thought to occur, to e = 0.04 +/- 0.01, which is smaller than previous models indicated
- …