161 research outputs found

    Advancing dendrochronological studies of fire in the United States

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct [2] the historical range and variability of fire regimes (e.g., frequency, severity, seasonality, spatial extent), [3] the influence of fire regimes on forest structure and ecosystem dynamics, and [4] the top-down (e.g., climate) and bottom-up (e.g., fuels, topography) drivers of fire that operate at a range of temporal and spatial scales. As in other scientific fields, continued application of dendrochronological techniques to study fires has shaped new trajectories for the science. Here we highlight some important current directions in the United States (US) and call on our international colleagues to continue the conversation with perspectives from other countries

    Climatic controls on peatland black spruce growth in relation to water table variation and precipitation

    Get PDF
    Prior research has demonstrated the importance of water limitations and increasing temperatures on upland black spruce (Picea mariana [Mill.] B.S.P.) tree growth, which is a dominant component of the North American boreal forest. However, little work has been done to investigate the connectivity between growth and hydro‐climate in peatland black spruce systems. The boreal forest is the largest global terrestrial biome and is highly threatened due to current and projected increases in temperatures for the northern latitudes. Here we explore the dynamics among annual black spruce growth, climate, and water table elevations using 45 years of in situ precipitation, temperature, and water table elevation coupled with dendrochronological analysis from six research peatlands at the Marcell Experimental Forest, MN, USA. From 1963 to 2010, we found weak relationships between water table elevation and black spruce growth at the six study sites. Instead, annual black spruce growth was most favourable during three climatic periods: (a) cool, moist conditions in mid‐summer; (b) warm mid‐spring temperatures; and (c) cool temperatures in the fall prior to the current growing season. The disconnect between black spruce growth and water table dynamics was surprising and suggests that either annual black spruce growth is minimally responsive to hydrological fluctuations at the timescale we analysed or there is great elasticity of black spruce growth to peatland water table and evapotranspiration dynamics under the range of hydrological fluctuations contained in our record

    The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps

    Get PDF
    Tree ring chronologies were developed from trees growing at two sites in Slovenia which differed in their ecological and climatological characteristics. Ring width, maximum latewood density, annual height increment and latewood cellulose carbon isotope composition were developed at both sites and time-series verified against instrumental climate data over the period (AD 1960–AD 2002). Ring width sensitivity to summer temperature is site-dependent, with contrasting responses at alpine and lowland sites. Maximum density responds to September temperatures, suggesting lignification after cell division has ended for the season. Stable carbon isotopes have great potential, responding to summer temperature at oth alpine and lowland stands. Height increment appears relatively insensitive to climate, and is likely to be dominated by local stand dynamics

    Reconstructing 800 years of summer temperatures in Scotland from tree rings

    Get PDF
    We thank The Carnegie Trust for the Universities of Scotland for providing funding for Miloš Rydval’s PhD. The Scottish pine network expansion has been an ongoing task since 2007 and funding must be acknowledged to the following projects: EU project ‘Millennium’ (017008-2), Leverhulme Trust project ‘RELiC: Reconstructing 8000 years of Environmental and Landscape change in the Cairngorms (F/00 268/BG)’ and the NERC project ‘SCOT2K: Reconstructing 2000 years of Scottish climate from tree rings (NE/K003097/1)’.This study presents a summer temperature reconstruction using Scots pine tree-ring chronologies for Scotland allowing the placement of current regional temperature changes in a longer-term context. ‘Living-tree’ chronologies were extended using ’subfossil’ samples extracted from nearshore lake sediments resulting in a composite chronology > 800 years in length. The North Cairngorms (NCAIRN) reconstruction was developed from a set of composite blue intensity high-pass and ring-width low-pass chronologies with a range of detrending and disturbance correction procedures. Calibration against July-August mean temperature explains 56.4% of the instrumental data variance over 1866-2009 and is well verified. Spatial correlations reveal strong coherence with temperatures over the British Isles, parts of western Europe, southern Scandinavia and northern parts of the Iberian Peninsula. NCAIRN suggests that the recent summer-time warming in Scotland is likely not unique when compared to multi-decadal warm periods observed in the 1300s, 1500s, and 1730s, although trends before the mid-16th century should be interpreted with some caution due to greater uncertainty. Prominent cold periods were identified from the 16th century until the early 1800s – agreeing with the so-called Little Ice Age observed in other tree-ring reconstructions from Europe - with the 1690s identified as the coldest decade in the record. The reconstruction shows a significant cooling response one year following volcanic eruptions although this result is sensitive to the datasets used to identify such events. In fact, the extreme cold (and warm) years observed in NCAIRN appear more related to internal forcing of the summer North Atlantic Oscillation.Publisher PDFPeer reviewe

    Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate

    Get PDF
    The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species

    Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA

    Get PDF
    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior

    Can snowshoe hares control treeline expansions?

    No full text
    corecore